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VERTICAL FEDERATED LEARNING USING ADVERSARIAL AUTOENCODERS
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With the increasing reliance on machine learning in the financial sector, data privacy has
become a critical challenge. Vertical Federated Learning (VFL) enables multiple entities to
collaboratively train models without sharing raw data. However, existing privacy-preserving tech-
niques, such as homomorphic encryption and differential privacy, often incur high computational
costs or degrade model performance. To address these issues, this study proposes a privacy-
preserving VFL framework based on Adversarial Autoencoders (AAE). By encoding features into
privacy-enhanced latent representations and aggregating them at a central server, our approach
effectively mitigates data leakage risks while maintaining model performance. Experimental
results on three financial datasets demonstrate that the proposed method achieves competitive
classification performance while significantly enhancing privacy protection. This study provides
a practical and efficient solution for privacy-preserving machine learning in financial applications.
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1. INTRODUCTION

Machine learning (ML) has become essential in finance, en-
abling applications such as credit risk assessment and fraud de-
tection. High-performance ML models require large-scale data
from multiple institutions [1]. However, concerns over data pri-
vacy, security, and regulatory compliance hinder centralized data
collection. Federated Learning (FL) provides a decentralized
solution where institutions train local models and share only ag-
gregated parameters [2]. Various privacy-enhancing techniques,
including k-anonymity [3], I-diversity [4], t-closeness [5], differ-
ential privacy [6], and homomorphic encryption [7, 8], mitigate
risks but often degrade model accuracy or impose high compu-
tational costs.

FL is classified into Horizontal Federated Learning (HFL) and
Vertical Federated Learning (VFL) [9]. HFL applies when in-
stitutions share the same features but different samples, whereas
VFL is suited for cases where institutions hold complementary
features for the same entities. VFL is particularly relevant in
finance for tasks like credit scoring and fraud detection under
stringent privacy regulations. However, VFL faces challenges,
including privacy-preserving techniques reducing model perfor-
mance, data leakage risks through intermediate updates, and high
computational and communication costs.

Existing research has leveraged autoencoders to secure feature
representations in VFL [10]. However, traditional autoencoders
remain vulnerable to reconstruction attacks. Advances in Gener-
ative Adversarial Networks (GANSs) have led to Adversarial Au-

toencoders (AAE), which incorporate a discriminator network to
enforce a predefined latent space distribution, enhancing privacy
without significantly compromising model utility.

This study proposes an AAE-based privacy-preserving frame-
work for VFL in financial applications. Our approach transforms
raw data into secure feature representations, mitigating recon-
struction attacks while preserving predictive performance. Com-
pared to conventional autoencoders, AAE enhances resilience
against adversarial inference and reduces privacy risks. Ad-
ditionally, our method optimizes the trade-off between privacy
protection and computational efficiency.

We evaluate our framework on three benchmark financial
datasets : Adult Income [11], Default of Credit Card Clients [12],
and Bank Marketing [13], and compare it against overcomplete
autoencoders(OAE) [10] and centralized learning. Experimental
results demonstrate that our AAE-VFL framework significantly
improves privacy protection while maintaining high classifica-
tion accuracy, advancing privacy-focused machine learning for
financial applications. Our findings support the broader adoption

of federated learning in privacy-sensitive environments.

2. RELATED WORK

(1) FEDERATED LEARNING

Federated Learning (FL) is a framework that enables a group of
clients to collaborate in resolving machine learning issues under
a single coordination of a server. In FL, a client holds its training
data and, therefore, its privacy is preserved. FL is supported



through two principal concepts: model update transmissions and
local computation. FL effectively addresses the issue of concerns
over privacy and reduces the cost incurred in traditional central-
ized machine learning approaches through these two processes.
In Federated Learning (FL), individual raw data for each client
is kept locally and not exchanged or shared with any party. In-
stead, a device trains its model with its private information and
uploads model parameters to a shared server for aggregation. The
server aggregates model parameters and updates a global model
and distributes an updated model to the clients, thereby achieving

desired learning objectives.
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Figure 1. The process of Federated Learning.

According to the classification by Yang et al. [9], federated
learning can be divided into three types based on how the datasets
owned by participants are distributed. Specifically, it focuses on
the sample space, feature space, and ground truth labels of each
dataset.

e Sample Space: The sample space refers to the set of all
data samples. For example, in a classification problem
that determines whether a given image is a picture of a
dog, an individual image represents one sample (or in-
stance). Similarly, in tasks using tabular data where each
row represents information about a user, each row (i.e.,

each user) corresponds to one sample.

e Feature Space: The feature space refers to the set of all
possible features that a sample can have. For images, the
numerical values of each pixel in the sample image rep-
resent features. For tabular data, each column (attribute)
represents an individual feature.

e Ground Truth Labels: Correct information for an indi-
vidual instance is understood as ground truth labels. In
training, a prediction for a specific sample is produced by
the model, and model optimization is performed through
minimizing predicted values and ground truth labels’ dif-
ference.

Based on these elements, federated learning is classified into
the following three types:

e Horizontal Federated Learning (HFL): The sample spaces
of the datasets differ, but the feature spaces have acommon
subset. For example, Google uses HFL to enable mobile
phone users to collaboratively train a next-word prediction
model using their datasets [14].

e Vertical Federated Learning (VFL): The datasets share
a common sample space, but their feature spaces differ.
For example, banks use VFL to collaborate with billing
agencies to build financial risk models for corporate cus-
tomers [15].

o Federated Transfer Learning (FTL): The datasets have par-
tially overlapping sample spaces and feature spaces. For
instance, EEG (electroencephalogram) data from multi-
ple subjects with heterogeneous distributions can be used
to collaboratively build a brain—computer interface (BCI)
model using FTL [16].

Figure 2, 3, 4 below summarizes the states of datasets in the
three types of federated learning.
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(2) VERTICAL FEDERATED LEARNING

Vertical federated learning is most applicable in scenarios
when a group of data owners have access to common samples but
have datasets with different features. In this case, let participants

A and B have datasets represented as

Xa RV XpeR™P (1)

where n is the number of samples, and d4 and dp are the
number of features for A and B, respectively. Both participants
share the same sample IDs and align their data based on these
IDs for each sample.

In vertical federated learning, the goal is to collaboratively train
a global model f(Xa,Xp) by exchanging gradients without
sharing raw data. A typical optimization problem in this setting
can be formulated as follows:

min : L (f (XX);OA)’ f (Xf(ai)?eB) ’ y(“) @

where 64 and Op are the model parameters for A and B, respec-
tively, and L is the loss function.
(3) AUTOENCODER

Autoencoders (AE) are a class of neural networks used for un-
supervised representation learning, mapping high-dimensional
input data into a lower-dimensional latent space while preserving
essential information [17]. The primary objective of an autoen-
coder is to learn a function f : X — Z that transforms input
data X into a latent representation Z, from which the decoder
attempts to reconstruct X as faithfully as possible. This process
can be formulated as follows:

Z = fo(X), 3
X = g4(2). “

where fp represents the encoder parameterized by 6, g repre-
sents the decoder parameterized by ¢, and X is the reconstructed

output.

Loss Functions The optimization objective of an autoencoder
is to minimize the reconstruction loss, commonly expressed as:

N
1 52
Lag = ¥ ; 1X: — X4)°. )

- ||? denotes the

where N is the number of samples, and ||
squared error (typically mean squared error, MSE). This loss
function ensures that the reconstructed data X is as close as
possible to the original input X, capturing the most significant

features while discarding noise.

(4) ADVERSARIAL AUTOENCODER

Following the introduction of Generative Adversarial Net-
works (GAN) by Goodfellow [18], adversarial training has
demonstrated notable success in fields such as image generation,
data augmentation, and representation learning. On the other
hand, AutoEncoders (AE) have been extensively employed for
feature extraction and dimensionality reduction, but traditional
AE often encounter difficulties in flexibly modeling data in the
latent space.

To address these challenges, Makhzani proposed the Adver-
sarial AutoEncoder (AAE) [19]. By incorporating adversarial
training into the latent space of an AutoEncoder, AAE encour-
ages the encoder s output distribution to align with a prescribed
prior, thereby improving both generative quality and latent rep-

resentation capacity when compared to standard AE.

Network Architecture An AAE consists of three main com-
ponents—an encoder, a decoder, and a discriminator—building
upon the base structure of a standard AutoEncoder:

e Encoder: Maps the input data X to a latent representation
Z:

Z = fo(X) (6)

where fy represents the encoder parameterized by 6.

e Decoder: Reconstructs X from the latent representation
Z:

X =94(2) @)

g represents the decoder parameterized by ¢, and X is
the reconstructed output.

e Discriminator: Distinguishes between encoded latent
variables Z and samples from a prior distribution p(Z).

Loss Functions The training objective of AAE typically com-
bines two main loss terms: a reconstruction loss and an adver-

sarial loss:

LAAE = Lrecnnstruction + )\Ladversarial (8)

o Reconstruction Loss: The reconstruction loss ensures
that the output of the decoder Z is close to the original
input . Common choices include Mean Squared Error
(MSE) or cross-entropy. An MSE-based reconstruction

loss can be written as:

N
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o Adversarial Loss: In order to force the latent distribution
produced by the encoder to match a chosen prior p(z),
an adversarial training mechanism is applied in the latent
space. This setup is analogous to a standard GAN, with a
discriminator distinguishing between samples from p(z)



and Z. The typical formulation for the adversarial loss
(using the binary cross-entropy objective) is:

Ladversarial = Ep(z) [log DL/J (Z)]
+ Eqy(z1x)[log(1 — Dy(Z))]  (10)

where D, (+) is the discriminator, and A\ balances the
trade-off between reconstruction loss and adversarial reg-

ularization.

Training Procedure: Training an AAE typically pro-

ceeds in an alternating fashion:

— Discriminator Update: Hold the encoder and
decoder fixed. Update the discriminator D, by
maximizing its ability to distinguish real samples

z ~ p(z) from encoder outputs Z.

— Encoder and Decoder Update: Fix the discrimi-
nator. Update the encoder Z and decoder X jointly,
minimizing both the reconstruction loss and the ad-
versarial loss to “ fool ” the discriminator into be-
lieving that the latent vectors from Z come from

p(2).
A typical combined objective can be written as:

Iglgl mfx Lrec(07 ¢) +A Ladv(ey 1/1)’ (11)

where A is a hyperparameter that balances the importance

of the reconstruction loss relative to the adversarial loss.

PROPOSED METHOD
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Figure 5. Training Workflow.

for each client i do

Encode local data X; using AAE to obtain latent
representation Z;

Train AAE locally to minimize reconstruction loss
+ adversarial loss

Send Z; to the central server

end
for central server do

Aggregate received Z; from all clients
Train a global classifier using the aggregated Z
Distribute model updates back to clients

end

Algorithm 1: AAE-VFL Training

(1) OVERVIEW OF VERTICAL FEDERATED LEARN-
ING

Our work targets the unique challenges of vertical federated
learning (VFL), where features (rather than samples) are dis-
tributed across multiple data holders. Unlike horizontal feder-
ated learning, in which participants each have data samples with
the same set of features, VFL demands an effective mechanism
to align partial records residing at different organizations. This
alignment ensures that each data sample ’ s features can be com-
bined without revealing private information, thereby facilitating
collaborative model training.

(2) DATA ALIGNMENT AND PARTITIONING

To handle the alignment process, we first match the IDs across
all participating clients. This step ensures that each data holder
can correctly identify the samples they share. For instance, row
3 in Client A’s dataset corresponds to row 3 in Clients B and C’s
datasets. Once the mapping is established, we split the dataset
vertically among the clients. Because real-world data can exhibit
varying sizes and degrees of overlap, we evaluate the versatility
of our approach by dividing the dataset into differing numbers of
subsets. This partitioning simulates real-world scenarios where
multiple organizations each possess unique feature subsets of the

same user base.
(3) LOCAL TRAINING WITH ADVERSARIAL AU-
TOENCODERS

Following the vertical partitioning, each client independently
trains a local model based on an adversarial autoencoder (AAE)
framework (Figures 5 a, b, ¢). By leveraging AAE, each client
learns a latent representation of its partitioned features. The
core benefit of using adversarial training in the latent space is to
encode and preserve the most discriminative information without
exposing raw features to other parties.

Concretely, each AAE comprises:

1. Encoder: Projects input data into a latent representations

space.

2. Decoder: Reconstructs the original features from the la-

tent vectors.

3. Discriminator: Encourages these latent representations
to follow a chosen prior distribution, thereby regularizing

the representation.

This adversarial mechanism makes it difficult to recover sensitive,
high-dimensional details from the latent representations alone,
providing an extra layer of data privacy while still capturing the

essential patterns needed for downstream tasks.
(4) LATENT REPRESENTATION AGGREGATION AT
THE CENTRAL SERVER

Once trained locally, each client extracts the learned latent
representations of its respective features (Figures 5 a’, b’, ¢’).
These latent representations are then securely transferred to a
central server, which aggregates them. Because each client’s
autoencoder is tuned to produce consistent embeddings aligned
with a common prior, the aggregated latent space is effectively
unified, despite the original data being distributed.



At the central server, we combine the latent representations
from all clients to train a global model for tasks such as clas-
sification. This approach significantly reduces communication
overhead (since latent representations are typically smaller in
dimension than raw data) and addresses privacy concerns by
sharing only encoded representations.

(5)  MODEL COMPARISON AND BASELINE

To benchmark our approach, we use a centralized model
(trained on the full dataset without partitioning) as a baseline.
We then compare:

1. A machine learning model trained purely on the vertically
partitioned data (Figures 5 a, b, c), where each client s

features remain separated.

2. A machine learning model trained on the latent representa-
tions from each client (Figures 5 a’, b’, ¢’), demonstrating

how the AAE-based aggregation improves performance.

Finally, by comparing the latent representation-based verti-
cal federated model with the centralized baseline, we assess the
practical trade-offs between accuracy and privacy preservation.
For performance evaluation, we employ standard classification
metrics such as accuracy and AUROC (Figure 5).

Overall, our method bridges the gap between privacy require-
ments and the need for high-quality modeling in distributed en-
vironments. It lays the groundwork for future exploration of ad-
versarial learning techniques within vertical federated settings,
aiming to further refine the balance between data security and
model performance.

4. EXPERIMENTS

(1) DATASETS
a) ADULT INCOME DATASET

The Adult Income dataset [11] consists of two classification la-
bels indicating whether an individual earns more than $50,000 a
year. Itincludes 8 categorical and 6 continuous variables as input
features. Initially, the dataset contained records for 37,155 indi-
viduals earning $50,000 or less and 11,687 individuals earning
more than $50,000 annually.To balance the dataset, we applied
random undersampling, selecting a subset of 11,687 individuals
from the lower-income group. This resulted in a final dataset
of 23,374 individuals, ensuring an equal class distribution and
setting the baseline prediction probability at 50%.As shown in
Table 1, we then partitioned this dataset vertically into three seg-
ments, simulating a scenario where three different organizations

each hold partial information about the same individuals.

Table 1. Dataset composition and training parameters with

division to simulate vertically partitioned data.

Table 2. Features and labels for the Adult Income Dataset.

Dataset Division Size Features Autoencoder
Adult Income 3 sites 23,374 5,54 64-128-64
Credit Card 6 sites 15,762 | 4,4,4,4,4,4 64-128-64
Bank Marketing 4 sites 9,280 55,55 64-128-64

ID Age Workclass Native Country | Income
39 State-gov United States < 50K

2 50 | Self-emp-not-inc United States < 50K

3 38 Private United States < 50K
48,842 52 Self-emp-inc United States > 50K

b) DEFAULT OF CREDIT CARD CLIENTS DATASET

The Default of Credit Card Clients dataset [12] denoted as
Credit Card in Table 1, is a publicly available dataset used for pre-
dicting credit card payment defaults (binary classification). The
original dataset consists of 30,000 records, where 6,636 (22.12%)
clients defaulted on their payments, while 23,364 (77.88%) did
not.

To mitigate the class imbalance problem, we applied ran-
dom undersampling, selecting an equal number of non-defaulted
clients. Specifically, we randomly sampled 6,636 non-defaulted
cases, resulting in a balanced dataset containing 13,272 records.
This balanced dataset was then vertically partitioned into 6 sites
to simulate a vertical federated learning (VFL) scenario, where
each site holds different subsets of the features while preserving

the same sample IDs (Table 1).

Table 3. Features and labels for the Credit Card.

ID LIMIT BAL | SEX Default (Next Month)
20,000 2 e 1
120,000 2 e 0
3 90,000 2 x 0
30,000 50,000 1 e 1

¢) BANK MARKETING

The Bank Marketing dataset [13] is used to predict whether
a customer will subscribe to a term deposit (binary classifica-
tion). The initial dataset contains 41,188 entries, where the target
variable is highly imbalanced: only 4,640 entries (11.28%) are
labeled as "yes", while 36,548 entries (88.72%) are labeled as
"no".

To address the class imbalance problem and ensure a balanced
baseline dataset, we randomly sampled 4,640 entries labeled as
"no" to match the 4,640 "yes" entries. This process resulted in a
balanced dataset containing a total of 9,280 entries. We then ver-
tically divided the dataset into 4 sites, with each site containing a
subset of the features (Table 1). This setup was used to simulate
a vertical federated learning (VFL) scenario while maintaining
a balanced target variable distribution for better model perfor-

mance and fair evaluation.
(2) TRAINING WORKFLOW

In a setup mirroring real-world conditions where data is di-
vided vertically among multiple entities, we split each of the
three datasets and utilized a third-party relay server to align cor-
responding entries across all sites. For instance, this alignment
ensured that the third entry on client A matched the same entry



Table 4. Features and labels for the Bank Marketing.

ID age job y
1 56 | housemaid no
57 services no
3 37 services no
41188 | 74 retired e no

on clients B and C. To examine the robustness of our approach,
various data partition strategies were employed (Table 1). Sub-
sequently, each site independently trained its own Adversarial
Autoencoder model (Figure 3 a, b, ¢). Upon completion of these
local training processes, the code-layer representations (Figure 3
a' ,b',c') from each site were collected and integrated for
further model training. We implemented this workflow using
PyTorch [20]. We then assessed classification performance pri-
marily through accuracy and the area under the receiver operating

characteristic curve (AUROC).
(3) EVALUATION METRICS

1. Accuracy
Accuracy measures the proportion of correctly classified
samples among the total samples. It provides a general

overview of the model’s performance.

Accuracy = TP+ TN (12)
Y= TP+ TN + FP + EN

2. AUROC (Area Under Receiver Operating Character-
istic Curve)
AUROC represents the area under the ROC curve and is
used to evaluate the model’s classification performance,
especially for imbalanced datasets. This metric helps
confirm the effectiveness of the latent representations in
downstream tasks.

(4) RESULTS

a) LATENT REPRESENTATION AND PRIVACY ANAL-
YSIS

The adversarial autoencoder (AAE) effectively encoded the
original data, which had been vertically partitioned, into latent
representations. Notably, this process was achieved without the
need for domain-specific expertise.The generated latent represen-
tations exhibited substantial differences from the original data
in both feature space and distribution (Figure 5a' ,b' ,¢'),
highlighting the network’s effectiveness in concealing raw in-
formation. This transformation not only preserved the essential
patterns required for downstream tasks but also ensured robust
data security by minimizing the risk of sensitive information

being reconstructed from the latent space.
b) CLASSIFICATION PERFORMANCE

After aggregating the latent data, we compared the proposed
model with both centralized models and independently trained
models using the original vertically partitioned data and their cor-
responding latent representations (Table 3). The results showed
that the performance of the adversarial autoencoder (AAE) model
improved as the capacity of the latent representation increased.

Additionally, employing categorical embeddings for categorical
variables ensured that the transformed representations remained
continuous, enhancing their compatibility with tabular neural
network models.

For the Bank Marketing dataset, which has a relatively large
number of rows, the accuracy and AUROC remained stable across
different sites, showing minimal performance fluctuation. The
Adult Income dataset also demonstrated consistent results, fur-
ther confirming the robustness of the AAE-based transformation.
Despite the vertically partitioned data structure, the Default of
Credit Card Clients Dataset, which was divided into six sites,
exhibited only a minor reduction in accuracy and AUROC. This
suggests that the proposed method effectively preserves data pri-
vacy while maintaining acceptable utility for downstream tasks
(Table 5).

Table 5. Classification results of the three datasets.

Site Adult Income Credit Card Bank Marketing
Accuracy AUROC | Accuracy AUROC | Accuracy AUROC
Central 0.83 091 0.80 0.79 0.89 0.95
OAE 0.82 0.90 0.71 0.79 0.88 0.94
AAE 0.82 0.90 0.71 0.79 0.88 0.94

5. CONCLUSION

This study proposes a privacy-preserving framework for Ver-
tical Federated Learning (VFL) using Adversarial Autoencoders
(AAE) to balance privacy, computational efficiency, and model
performance. By exchanging latent representations instead of
raw data, the method enhances privacy protection and reduces
the risk of sensitive information leakage. Compared to differen-
tial privacy, it avoids noise injection and prevents significant per-
formance degradation, while imposing lower computational and
communication overhead than homomorphic encryption. How-
ever, challenges remain in terms of explainability and commu-
nication costs, as leveraging latent representations can obscure
decision-making and high-dimensional data transmission may
become a bottleneck. Experimental results on three financial
datasets demonstrate that AAE-VFL significantly improves pri-
vacy protection while maintaining high classification accuracy.
This study highlights AAE ’ s potential for advancing privacy-
preserving machine learning, particularly in sensitive domains
like finance and healthcare, enabling secure cross-institution col-
laboration. Future work should focus on optimizing the trade-off

between privacy and efficiency to enhance real-world applicabil-

ity.
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