
Double Descent and High-Dimensional
Orthogonality



Overview of Double Descent

▶ As model complexity or feature dimension p increases, test
error shows: descent → peak → second descent.

▶ Commonly observed in linear regression when increasing
number of features p.

▶ Peak at p ≈ n (interpolation threshold): X⊤X nearly singular,
variance explosion.

▶ For p ≫ n, minimum-norm solution is selected;
high-dimensional orthogonality reduces variance → second
descent.



Variance Explosion and Reduction in Linear Regression

▶ Model: y = Xβ + ε, ε ∼ N (0, σ2I ).

▶ p < n: β̂ = (X⊤X )−1X⊤y . As p → n, smallest eigenvalue of
X⊤X shrinks → variance increases.

▶ p > n: infinitely many solutions; gradient descent and least
squares tend to pick the minimum-norm one (implicit
regularization).

▶ In high dimensions, new features are nearly orthogonal to
existing feature space, keeping coefficient norms small.



2D Case (p = 2): Uniform Around a Circle

▶ Random points on a unit circle (radius 1) are uniformly
distributed in direction over [0◦, 180◦].

▶ Fix the first vector pointing to the right (0◦).

▶ The probability the second vector lies within 90◦ ± 10◦:

20◦

180◦
=

1

9
≈ 0.111.

▶ Right angles occur, but acute and obtuse angles are equally
common.



3D Case (p = 3): Equatorial Band Advantage

▶ Points are uniformly distributed on the surface of a unit
sphere (S2).

▶ Surface area element:

dA = R2 sin θ dθ dϕ

(θ: polar angle).

▶ Area of a latitude band between θ and θ + dθ:

A(θ, θ + dθ) =

∫ 2π

0
R2 sin θ dϕ dθ = 2πR2 sin θ dθ.

▶ sin θ is maximized at θ = π/2 (equator) ⇒ equatorial band
has the largest area.



Angle Concentration in 3D

▶ PDF of the angle θ ∈ [0, π]:

f3(θ) =
1
2 sin θ.

▶ Probability of 90◦ ± 10◦:∫ 100◦

80◦

1
2 sin θ dθ = 1

2(cos 80
◦ − cos 100◦) ≈ 0.1736,

larger than 0.111 in 2D.

▶ Equator’s area dominance directly translates to higher
probability of near-orthogonal angles.



Intuitive Comparison

▶ 2D: Directions are uniform on a circle; 90◦ is not special.

▶ 3D: Directions on a sphere; most of the surface lies near the
equator, so angles cluster near 90◦.

▶ As dimension increases, “right angle” becomes the norm.



Empirical Angle Distributions (p=2 vs p=3)

▶ p = 2: Almost uniform over angles.

▶ p = 3: Peak near 90◦, low near 0◦, 180◦.

▶ Generated by many random unit vectors.



Generalization to p Dimensions

▶ Angle PDF on the (p − 1)-sphere:

fp(θ) = Cp sinp−2 θ, Cp =
Γ(p2 )√
π Γ(p−1

2 )
.

▶ As p increases, sinp−2 θ peaks sharply at θ = π/2,
concentrating mass near 90◦.

▶ Approx.: cos θ ∼ N (0, 1/p); variance shrinks as 1/p.



Probability of 90◦ ± 10◦ for Various p

p P(|θ − 90◦| ≤ 10◦)
2 0.1111
3 0.1736
4 ≈ 0.2200
10 ≈ 0.3904
100 ≈ 0.9175

▶ Higher p ⇒ almost all pairs are near-orthogonal.

▶ At p = 100, almost everything lies within 90◦ ± 10◦.



High-Dimensional Orthogonality and Double Descent

▶ At p ≈ n: X⊤X ill-conditioned, variance explodes (peak).

▶ For p ≫ n: New features are nearly orthogonal to existing
space. Minimum-norm solution keeps coefficient norm small.

▶ Orthogonality reduces noise amplification, lowering variance
→ second descent.



Practical Note for Real Data

▶ Real data populations often non-isotropic (latent factor
correlations) → orthogonality effect weaker.

▶ Whitening (PCA/ZCA), ICA, or self-supervised learning can
promote isotropy.

▶ Large latent dimension in intermediate layers +
normalization/decorrelation regularizers can help.



Liu’s Double Descent and the
Hyper-High-Dimensional Factor Hypothesis
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Background of the Hypothesis

▶ Real-world phenomena are determined by a vast number of
nearly independent hyper-high-dimensional factors.

▶ Observable features are limited and cannot fully capture these
underlying factors directly.

▶ Prediction has two main strategies:

1. Reconstruct the hyper-high-dimensional factors from the
features, then predict using them.

2. If reconstruction is impossible, approximate the mapping with
a complex function.



Why So Many Parameters Are Needed

1. Increased Basis for High-Dimensional Representation To
represent independent factors, we need many orthogonal basis
vectors, directly increasing parameter count.

2. Curse of Dimensionality in Nonlinear Approximation
Capturing factor interactions requires deep networks or a large
number of nodes.

3. Reconstruction of Compressed Information Observed
features are projections of the original factors, and a high
degree of model freedom is required to recover lost
information.



Connection to Double Descent

▶ At p ≈ n (number of features close to sample size), X⊤X
becomes ill-conditioned, variance explodes (first peak).

▶ In the p ≫ n regime, new features are almost orthogonal to
the existing space, keeping coefficient norms small (implicit
regularization).

▶ Once the model has enough parameters to approximate the
hyper-high-dimensional factors, test error enters the second
descent.



Liu’s Hypothesis (Summary)

Core Idea
Real-world phenomena consist of hyper-high-dimensional
independent factors.
To predict from a finite set of observed features, we need a large
number of parameters to reconstruct or approximate the factor
space.

▶ High-dimensional orthogonality enables variance reduction in
the p ≫ n regime.

▶ The second descent aligns with achieving sufficient factor
reconstruction.

▶ For real data, preprocessing (whitening, ICA, etc.) can
enhance factor independence.
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Introduction

▶ This is precisely the essence of the second descent in double
descent.

▶ Increasing capacity (number of parameters or feature
dimension p) can improve generalization due to the
mechanisms detailed next.



Mechanism (1): Interpolation Threshold

▶ Near p ≈ n (features ≈ samples): X⊤X is nearly singular
(ill-conditioned) ⇒ variance explosion ⇒ test error peaks
(first peak).

▶ For p > n: the solution is non-unique; gradient descent / least
squares tend to the minimum-norm solution (implicit
regularization).



Mechanism (2): Near-Orthogonality in High Dimensions

▶ With very large feature dimension p, new feature vectors are
almost orthogonal to the span of existing ones.

▶ This suppresses the injection of spurious noise into coefficient
estimates ⇒ estimator variance decreases.

▶ As capacity increases further, overfitting becomes less likely
and test error drops again.



Mechanism (3): Positive Effect of Larger Capacity

▶ Models with many parameters can cover function families
closer to the true mapping.

▶ Combined with high-dimensional near-orthogonality, this yields
high expressivity with low variance.



Mechanism (4): Intuitive Flow

Capacity increase ⇒ Overfitting peak at p≈n ⇒ High-dimensional orthogonality ↑⇒ Minimum-norm stability ⇒ Generalization improves (second descent).



Universal Approximation vs. Practice

Can “not-so-deep” models approximate complex functions?

▶ Universal Approximation Theorem: with non-linear
activations, a single hidden layer of sufficient width can
approximate any continuous function.

▶ In practice: required width can be enormous; optimization can
be unstable; sample complexity can be high.

▶ Depth buys efficiency: hierarchical composition often
reduces parameters for the same accuracy.



Shallow vs. Deep in Practice

▶ Shallow can suffice: smooth/low-frequency targets with
weak interactions; strong inductive bias aligned with the task.

▶ Deep is preferable: non-smooth, multi-scale, high-order
interactions (especially in high p).

▶ Deep nets can form large, quasi-isotropic latent spaces
internally, leveraging near-orthogonality.



Angle Concentration: 2D vs 3D (Intuition)

▶ 2D: directions uniform on a circle ⇒ 90◦ is not special.

▶ 3D: sphere surface area element dA = R2 sin θ dθ dϕ peaks at
the equator (θ = π/2).

▶ On Sp−1: angle pdf fp(θ) = Cp sin
p−2 θ ⇒ mass concentrates

near 90◦ as p grows.

Cp =
Γ(p2 )√
π Γ(p−1

2 )
, cos θ ≈ N

(
0, 1p

)
.



(Optional) Empirical Angle Distributions

▶ p = 2: near-uniform over [0◦, 180◦].

▶ p = 3: strong peak near 90◦; 0◦/180◦ are rare.



Thermodynamic Limit & Replica Trick (Overview)

▶ Thermodynamic limit: n → ∞, p → ∞, ratio α = p/n
fixed.

▶ Replica trick: compute E[logZ ] via

E[logZ ] = lim
m→0

E[Zm]− 1

m
.

▶ Yields analytic error curves matching large-scale simulations:
reproduces the first peak and the second descent.



Replica Assumptions (1): Data Distribution

▶ Samples xi ∈ Rp are i.i.d.

▶ Typically isotropic Gaussian:

xi ∼ N (0, Ip),

enabling clean high-dimensional geometry (near-orthogonality)
and analyzable random-matrix spectra.

▶ Some works allow known, diagonalizable Σ ̸= Ip under mild
spectral conditions.



Replica Assumptions (2): Label Generation

▶ Linear teacher–student model:

yi = x⊤i β∗ + ϵi ,

where ϵi is Gaussian noise, independent of xi .

▶ β∗ often assumed i.i.d., zero-mean (Gaussian for tractability).



Replica Assumptions (3): Parameter Scaling

▶ Thermodynamic limit: n → ∞, p → ∞ with fixed α = p/n.

▶ Enables tools like the Marčenko–Pastur distribution to
describe eigenvalue spectra.



Replica Assumptions (4): Learning Algorithm

▶ Typically least squares (possibly ridge-regularized).

▶ Or gradient descent converging to the minimum-norm
solution.

▶ Quadratic losses/penalties ensure closed-form expectations.



Replica Assumptions (5): Mathematical Technique

▶ Assume the validity of the replica limit exchange:

E[logZ ] = lim
m→0

E[Zm]− 1

m
.

▶ Replica Symmetry (RS) assumed; when RS breaks,
solutions become more involved.



Summary of Assumptions and Scope

▶ Analytic formulas rely mainly on:

1. High-dimensional limit + isotropic Gaussian (or
rotation-invariant) features.

2. Simple solvable estimators (linear/ridge; minimum-norm bias).

▶ If real data violate these (strong correlations, heavy tails,
nonlinearities), treat the analytic curve as an
approximation/guide.



Operational Tips: Using the Second Descent Safely

▶ Standardize/whiten features; reduce correlations; monitor the
spectrum/condition of X⊤X .

▶ Expect a peak near p ≈ n; in p ≫ n, leverage the
minimum-norm bias.

▶ Encourage near-orthogonality: larger latent p, normalization,
decorrelation regularizers.

▶ Choose capacity to cover the function class; control variance
via explicit/implicit regularization and early stopping.



One-Page Recap: Why Capacity Can Help

1. Crossing the interpolation threshold ⇒ minimum-norm
solutions dominate.

2. High-dimensional near-orthogonality suppresses variance.

3. Larger capacity better matches the target function class.

⇒ Second descent: test error decreases again as capacity
increases.


