Double Descent and High-Dimensional Orthogonality

Overview of Double Descent

- As model complexity or feature dimension p increases, test error shows: descent \rightarrow peak \rightarrow second descent.
- Commonly observed in linear regression when increasing number of features p.
- ▶ Peak at $p \approx n$ (interpolation threshold): X^TX nearly singular, variance explosion.
- For p ≫ n, minimum-norm solution is selected; high-dimensional orthogonality reduces variance → second descent.

Variance Explosion and Reduction in Linear Regression

- ▶ Model: $y = X\beta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$.
- ▶ p < n: $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$. As $p \to n$, smallest eigenvalue of $X^{\top}X$ shrinks \to variance increases.
- ightharpoonup p > n: infinitely many solutions; gradient descent and least squares tend to pick the minimum-norm one (implicit regularization).
- ► In high dimensions, new features are nearly orthogonal to existing feature space, keeping coefficient norms small.

2D Case (p = 2): Uniform Around a Circle

- ► Random points on a unit circle (radius 1) are uniformly distributed in direction over [0°, 180°].
- Fix the first vector pointing to the right (0°).
- ▶ The probability the second vector lies within $90^{\circ} \pm 10^{\circ}$:

$$\frac{20^{\circ}}{180^{\circ}} = \frac{1}{9} \approx 0.111.$$

Right angles occur, but acute and obtuse angles are equally common.

3D Case (p = 3): Equatorial Band Advantage

- Points are uniformly distributed on the surface of a unit sphere (S^2) .
- Surface area element:

$$dA = R^2 \sin\theta \, d\theta \, d\phi$$

(θ : polar angle).

▶ Area of a latitude band between θ and $\theta + d\theta$:

$$A(\theta, \theta + d\theta) = \int_0^{2\pi} R^2 \sin \theta \, d\phi \, d\theta = 2\pi R^2 \sin \theta \, d\theta.$$

▶ $\sin \theta$ is maximized at $\theta = \pi/2$ (equator) \Rightarrow equatorial band has the largest area.

Angle Concentration in 3D

▶ PDF of the angle $\theta \in [0, \pi]$:

$$f_3(\theta) = \frac{1}{2}\sin\theta.$$

▶ Probability of $90^{\circ} \pm 10^{\circ}$:

$$\int_{80^{\circ}}^{100^{\circ}} \frac{1}{2} \sin \theta \ d\theta = \frac{1}{2} (\cos 80^{\circ} - \cos 100^{\circ}) \approx 0.1736,$$

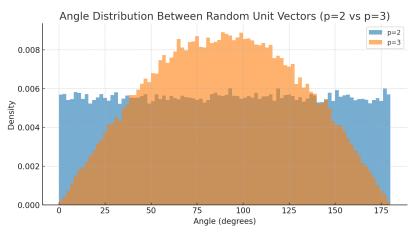
larger than 0.111 in 2D.

Equator's area dominance directly translates to higher probability of near-orthogonal angles.

Intuitive Comparison

- ▶ 2D: Directions are uniform on a circle; 90° is not special.
- ▶ 3D: Directions on a sphere; most of the surface lies near the equator, so angles cluster near 90°.
- ► As dimension increases, "right angle" becomes the norm.

Empirical Angle Distributions (p=2 vs p=3)



- ightharpoonup p = 2: Almost uniform over angles.
- ightharpoonup p = 3: Peak near 90°, low near 0°, 180°.
- ► Generated by many random unit vectors.

Generalization to p Dimensions

▶ Angle PDF on the (p-1)-sphere:

$$f_p(\theta) = C_p \sin^{p-2} \theta, \quad C_p = \frac{\Gamma(\frac{p}{2})}{\sqrt{\pi} \Gamma(\frac{p-1}{2})}.$$

- As p increases, $\sin^{p-2}\theta$ peaks sharply at $\theta=\pi/2$, concentrating mass near 90°.
- ▶ Approx.: $\cos \theta \sim \mathcal{N}(0, 1/p)$; variance shrinks as 1/p.

Probability of $90^{\circ} \pm 10^{\circ}$ for Various *p*

p	$\mid P(heta-90^\circ \leq 10^\circ)$
2	0.1111
3	0.1736
4	≈ 0.2200
10	≈ 0.3904
100	pprox 0.9175

- ▶ Higher $p \Rightarrow$ almost all pairs are near-orthogonal.
- ▶ At p = 100, almost everything lies within $90^{\circ} \pm 10^{\circ}$.

High-Dimensional Orthogonality and Double Descent

- ▶ At $p \approx n$: $X^T X$ ill-conditioned, variance explodes (peak).
- For $p \gg n$: New features are nearly orthogonal to existing space. Minimum-norm solution keeps coefficient norm small.
- ▶ Orthogonality reduces noise amplification, lowering variance → second descent.

Practical Note for Real Data

- ▶ Real data populations often non-isotropic (latent factor correlations) → orthogonality effect weaker.
- Whitening (PCA/ZCA), ICA, or self-supervised learning can promote isotropy.
- Large latent dimension in intermediate layers + normalization/decorrelation regularizers can help.

Liu's Double Descent and the Hyper-High-Dimensional Factor Hypothesis

Qingfeng Liu

Background of the Hypothesis

- ► Real-world phenomena are determined by a vast number of nearly independent **hyper-high-dimensional factors**.
- Observable features are limited and cannot fully capture these underlying factors directly.
- Prediction has two main strategies:
 - Reconstruct the hyper-high-dimensional factors from the features, then predict using them.
 - If reconstruction is impossible, approximate the mapping with a complex function.

Why So Many Parameters Are Needed

- 1. **Increased Basis for High-Dimensional Representation** To represent independent factors, we need many orthogonal basis vectors, directly increasing parameter count.
- Curse of Dimensionality in Nonlinear Approximation
 Capturing factor interactions requires deep networks or a large number of nodes.
- Reconstruction of Compressed Information Observed features are projections of the original factors, and a high degree of model freedom is required to recover lost information.

Connection to Double Descent

- At $p \approx n$ (number of features close to sample size), $X^{\top}X$ becomes ill-conditioned, variance explodes (first peak).
- ▶ In the $p \gg n$ regime, new features are almost orthogonal to the existing space, keeping coefficient norms small (implicit regularization).
- Once the model has enough parameters to approximate the hyper-high-dimensional factors, test error enters the second descent.

Liu's Hypothesis (Summary)

Core Idea

Real-world phenomena consist of hyper-high-dimensional independent factors.

To predict from a finite set of observed features, we need a large number of parameters to reconstruct or approximate the factor space.

- ▶ High-dimensional orthogonality enables variance reduction in the $p \gg n$ regime.
- The second descent aligns with achieving sufficient factor reconstruction.
- ► For real data, preprocessing (whitening, ICA, etc.) can enhance factor independence.

Double Descent: Second Descent Essence and Replica-Trick Assumptions

August 11, 2025

Introduction

- This is precisely the essence of the second descent in double descent.
- ▶ Increasing capacity (number of parameters or feature dimension *p*) can improve generalization due to the mechanisms detailed next.

Mechanism (1): Interpolation Threshold

- Near $p \approx n$ (features \approx samples): $X^{\top}X$ is nearly singular (ill-conditioned) \Rightarrow variance explosion \Rightarrow test error peaks (first peak).
- ► For *p* > *n*: the solution is non-unique; gradient descent / least squares tend to the **minimum-norm solution** (implicit regularization).

Mechanism (2): Near-Orthogonality in High Dimensions

- ▶ With very large feature dimension *p*, new feature vectors are **almost orthogonal** to the span of existing ones.
- This suppresses the injection of spurious noise into coefficient estimates ⇒ estimator variance decreases.
- ► As capacity increases further, overfitting becomes less likely and test error drops again.

Mechanism (3): Positive Effect of Larger Capacity

- ► Models with many parameters can cover function families closer to the true mapping.
- Combined with high-dimensional near-orthogonality, this yields high expressivity with low variance.

Mechanism (4): Intuitive Flow

Capacity increase \Rightarrow Overfitting peak at $p \approx n \Rightarrow$ High-dimensional orth

Universal Approximation vs. Practice

Can "not-so-deep" models approximate complex functions?

- ► Universal Approximation Theorem: with non-linear activations, a single hidden layer of sufficient width can approximate any continuous function.
- ► In practice: required width can be enormous; optimization can be unstable; sample complexity can be high.
- ▶ **Depth buys efficiency**: hierarchical composition often reduces parameters for the same accuracy.

Shallow vs. Deep in Practice

- ▶ **Shallow can suffice**: smooth/low-frequency targets with weak interactions; strong inductive bias aligned with the task.
- ▶ Deep is preferable: non-smooth, multi-scale, high-order interactions (especially in high p).
- ▶ Deep nets can form large, quasi-isotropic latent spaces internally, leveraging near-orthogonality.

Angle Concentration: 2D vs 3D (Intuition)

- ▶ **2D**: directions uniform on a circle $\Rightarrow 90^{\circ}$ is not special.
- ▶ **3D**: sphere surface area element $dA = R^2 \sin \theta \ d\theta \ d\phi$ peaks at the equator $(\theta = \pi/2)$.
- ▶ On S^{p-1} : angle pdf $f_p(\theta) = C_p \sin^{p-2} \theta \Rightarrow$ mass concentrates near 90° as p grows.

$$C_p = \frac{\Gamma(\frac{p}{2})}{\sqrt{\pi} \Gamma(\frac{p-1}{2})}, \qquad \cos \theta \approx \mathcal{N}\left(0, \frac{1}{p}\right).$$

(Optional) Empirical Angle Distributions

- ightharpoonup p = 2: near-uniform over $[0^{\circ}, 180^{\circ}]$.
- ▶ p = 3: strong peak near 90° ; $0^{\circ}/180^{\circ}$ are rare.

Thermodynamic Limit & Replica Trick (Overview)

- ► Thermodynamic limit: $n \to \infty$, $p \to \infty$, ratio $\alpha = p/n$ fixed.
- ▶ **Replica trick**: compute $\mathbb{E}[\log Z]$ via $\mathbb{E}[\log Z] = \lim_{m \to 0} \frac{\mathbb{E}[Z^m] 1}{m}$.
- ➤ Yields analytic error curves matching large-scale simulations: reproduces the first peak and the second descent.

Replica Assumptions (1): Data Distribution

- ▶ Samples $x_i \in \mathbb{R}^p$ are i.i.d.
- ► Typically isotropic Gaussian:

$$x_i \sim \mathcal{N}(0, I_p),$$

enabling clean high-dimensional geometry (near-orthogonality) and analyzable random-matrix spectra.

▶ Some works allow known, diagonalizable $\Sigma \neq I_p$ under mild spectral conditions.

Replica Assumptions (2): Label Generation

► Linear teacher—student model:

$$y_i = x_i^{\top} \beta^* + \epsilon_i,$$

where ϵ_i is Gaussian noise, independent of x_i .

 \triangleright β^* often assumed i.i.d., zero-mean (Gaussian for tractability).

Replica Assumptions (3): Parameter Scaling

- ▶ Thermodynamic limit: $n \to \infty$, $p \to \infty$ with fixed $\alpha = p/n$.
- ► Enables tools like the Marčenko–Pastur distribution to describe eigenvalue spectra.

Replica Assumptions (4): Learning Algorithm

- Typically least squares (possibly ridge-regularized).
- Or gradient descent converging to the minimum-norm solution.
- Quadratic losses/penalties ensure closed-form expectations.

Replica Assumptions (5): Mathematical Technique

Assume the validity of the replica limit exchange:

$$\mathbb{E}[\log Z] = \lim_{m \to 0} \frac{\mathbb{E}[Z^m] - 1}{m}.$$

► Replica Symmetry (RS) assumed; when RS breaks, solutions become more involved.

Summary of Assumptions and Scope

- Analytic formulas rely mainly on:
 - 1. High-dimensional limit + isotropic Gaussian (or rotation-invariant) features.
 - 2. Simple solvable estimators (linear/ridge; minimum-norm bias).
- ► If real data violate these (strong correlations, heavy tails, nonlinearities), treat the analytic curve as an approximation/guide.

Operational Tips: Using the Second Descent Safely

- Standardize/whiten features; reduce correlations; monitor the spectrum/condition of $X^{T}X$.
- Expect a peak near $p \approx n$; in $p \gg n$, leverage the minimum-norm bias.
- Encourage near-orthogonality: larger latent p, normalization, decorrelation regularizers.
- ► Choose capacity to cover the function class; control variance via explicit/implicit regularization and early stopping.

One-Page Recap: Why Capacity Can Help

- 1. Crossing the interpolation threshold \Rightarrow minimum-norm solutions dominate.
- 2. High-dimensional near-orthogonality suppresses variance.
- 3. Larger capacity better matches the target function class.
- ⇒ **Second descent**: test error decreases again as capacity increases.