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Federated Learning: Example 1 - Smart Keyboards

▶ Application:

▶ Next-word prediction in mobile keyboards (e.g., GBoard)

▶ Implementation:

▶ Models learn from typing patterns on-device

▶ Only aggregated updates are shared

▶ Privacy Benefit:

▶ Personal typing data never leaves the device

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Federated Learning: Example 2 - Healthcare

▶ Application:

▶ Collaborative disease detection across hospitals

▶ Implementation:

▶ Each hospital trains on local patient data

▶ Shares only model parameters (not raw data)

▶ Regulatory Advantage:

▶ Complies with privacy protection laws — PIPL(CN) / APPI(JP) / HIPAA(US) /
GDPR(EU) — by design

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Federated Learning: Example 3 - Smart Manufacturing

▶ Application:

▶ Predictive maintenance in factories

▶ Implementation:

▶ Each machine learns from its own sensor data

▶ Combines knowledge without sharing operational data

▶ Business Value:

▶ Protects proprietary manufacturing data

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Federated Learning: Application Examples

Smart Keyboards

▶ Use Case:
▶ Next-word

prediction
▶ Process:

▶ On-device learning
▶ Update aggregation

▶ Benefit:
▶ Keeps typing data

private

Healthcare

▶ Use Case:
▶ Cross-hospital

diagnosis
▶ Process:

▶ Local model
training

▶ Parameter sharing
▶ Benefit:

▶ PIPL(CN)
APPI(JP)
HIPAA(US)
GDPR(EU)
compliant

Smart Manufacturing

▶ Use Case:
▶ Predictive

maintenance
▶ Process:

▶ Sensor data
learning

▶ Knowledge fusion
▶ Benefit:

▶ Protects
manufacturing data

All examples preserve data privacy by keeping raw data decentralized
Qingfeng Liu Hosei University Federated Learning @Jinlin University
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What is Federated Learning?

▶ Federated Learning (FL) is a distributed machine learning approach where
multiple clients collaboratively train a shared global model without sharing their
raw data.

▶ Key Idea:

▶ Clients (e.g., smartphones, IoT devices) keep their data locally.

▶ Only model updates (gradients or weights) are sent to a central server.

▶ The server aggregates updates and sends back the global model.

▶ Initially proposed by Google in 2016 for on-device learning.

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Centralized vs. Federated Learning

Centralized Learning:
▶ Data from all clients is uploaded to a

central server.
▶ Global model is trained on aggregated

data.
▶ Drawbacks: Privacy concerns, high

bandwidth usage.

Federated Learning:
▶ Data remains on devices.

▶ Only model parameters are shared.

▶ Benefits: Privacy-preserving, lower
bandwidth needs.

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Federated Learning Architecture

Central Server

Branch A
Local Data

Local Model

Branch B
Local Data

Local Model

Branch C
Local Data

Local Model

Model Update

Model Update

Model Update Global Model

Components:
▶ Central Server: Coordinates training,

aggregates updates.
▶ Clients: Devices with local datasets

that train the model.

Workflow:
1 Server sends global model to clients.
2 Clients train model locally on their

data.
3 Clients send updated parameters to

server.
4 Server aggregates and updates the

global model.
Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Basic Algorithm: Federated Averaging (FedAvg)

▶ FedAvg Steps:
1 Server initializes the global model w0.
2 In each round:

1 Server selects a subset of clients.
2 Clients download wt and perform local training:

wk
t+1 = wt − η∇Fk(wt)

where F represents the local loss function for each client.
3 Clients upload updated models to server.
4 Server aggregates:

wt+1 =
K∑

k=1

nk
n wk

t+1

▶ Key: Weighted averaging based on client data sizes nk.

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Advantages of Federated Learning

▶ Privacy: Raw data never leaves local devices.

▶ Bandwidth Efficiency: Only model updates are sent.

▶ Scalability: Supports millions of clients.

▶ On-device Personalization: Models can adapt to client-specific data.

Qingfeng Liu Hosei University Federated Learning @Jinlin University
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Challenges in Federated Learning

▶ Statistical Heterogeneity: Clients have Non-IID data.

▶ System Heterogeneity: Clients differ in computation, storage, and network.

▶ Communication Overhead: Frequent exchange of model parameters.

▶ Privacy Risks: Even updates may leak information.
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Overview of HFL and Challenges

Heterogeneous Federated Learning (HFL) is a subfield of FL attracting attention due to
its potential applications in large-scale industries.
▶ Statistical Heterogeneity

▶ Model Heterogeneity

▶ Communication Heterogeneity

▶ Device Heterogeneity

▶ Additional Challenges
FL is effective for utilizing rich private data on edge devices like smartphones and wear-
ables without compromising privacy. It enables collaborative ML model training while
keeping data decentralized.

Qingfeng Liu Hosei University Part II: Overview of Heterogeneous Federated Learning and Challenges
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Statistical Heterogeneity (Part 1)

One major challenge in HFL is statistical heterogeneity, referring to inconsistent data
distributions across clients (Non-IID).
Statistical heterogeneity can be divided into four distortion patterns:

1 Label Skew: Different label distributions across clients.

▶ Label Distribution Skew: Each client holds different types of labels (e.g.,
handwritten digit recognition where different users have different digits).

▶ Label Preference Skew: The same features are annotated differently by different
clients due to personal preferences.

2 Feature Skew: Different feature distributions across clients.

▶ Feature Distribution Skew: Labels consistent, but features vary.

▶ Feature Conditional Skew: No overlap of data features across clients.
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Statistical Heterogeneity (Part 2) and Model Heterogeneity

1 Quality Skew: Annotation or data quality varies across clients.

▶ Label Noise Skew: Varying proportions of noisy labels per client.

▶ Sample Noise Skew: Clients hold data of different quality levels.
2 Quantity Skew: Imbalanced local data sizes among clients.
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Model Heterogeneity

Model Heterogeneity: Unlike typical FL, clients may design their own model architec-
tures due to hardware constraints or requirements. Key challenge: transferring knowl-
edge in a model-agnostic way.
▶ Partial Heterogeneity: Some clients share model structures, others differ.

▶ Complete Heterogeneity: All clients use entirely distinct models.
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Communication, Device, and Additional Challenges

Communication Heterogeneity: IoT devices run under diverse networks (3G, 4G, Wi-
Fi), leading to increased communication costs and reduced learning efficiency.
Device Heterogeneity: Hardware differences (CPU, memory, battery) create system
imbalance and inefficiency.
Additional Challenges:
▶ Knowledge Transfer Barriers: Heterogeneity hinders efficient knowledge sharing.

▶ Privacy Leakage: Heterogeneity worsens risks of data leakage.
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Data-Level Methods (Part 1)

HFL solutions are categorized into three levels:
▶ Data-level: Smooth data heterogeneity, improve privacy.

▶ Model-level: Adapt local models for heterogeneity.

▶ Server-level: Server-based optimizations.
Private Data Processing:
▶ Data Preparation (e.g., FedMix, Astraea, FAug)

▶ Quality and diversity enhancement for FL performance.
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FedMix: Data Augmentation for FL

▶ Goal: Mitigate Non-IID effects by mixing data distributions across clients.

▶ Method:

▶ Uses mixup to generate virtual samples:

x̃ = λxi + (1− λ)xj, ỹ = λyi + (1− λ)yj

where λ ∼ Beta(α, α).

▶ Clients exchange a small fraction of their local data to create these mixtures.

▶ Effect: Smooth decision boundaries and reduce client drift.
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Astraea: Synthetic Data Generation (Overview)

▶ Goal:

▶ To address label distribution skew in federated learning (FL).
▶ Correct imbalances where some clients lack samples for certain classes.

▶ Key Idea:

▶ A global server trains a generative model (e.g., GAN or VAE) to produce synthetic
data.

▶ The server distributes synthetic samples (x̂, ŷ) to clients to augment their local
datasets.

▶ Effect:

▶ Reduces data imbalance across clients.
▶ Improves fairness and stability of the global model.
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Step 1: Training the Global Generator

▶ The server learns a global data distribution using a generator Gθ.

▶ The generator takes a latent variable z and produces pseudo-data samples:

min
θ

Ez∼p(z) [L (Gθ(z))]

- Gθ: generator with parameters θ. - z ∼ p(z): latent vector sampled from a prior
distribution (e.g., Gaussian). - L: loss function to evaluate quality of generated
data.

▶ Training is done on public or shared datasets that do not compromise privacy.
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Step 2 & 3: Generating and Distributing Synthetic Data

▶ Step 2: Synthetic Data Generation
▶ The server generates new data using the trained generator:

x̂ = Gθ(z), z ∼ p(z)

▶ Labels are assigned using a pre-trained classifier:

ŷ = fϕ(x̂)

where fϕ is the classifier.
▶ Step 3: Distributing to Clients

▶ The server sends (x̂, ŷ) to client k for dataset augmentation:

Dk ← Dk ∪ {(x̂, ŷ)}

▶ Clients use the augmented dataset for local training in the next FL round.
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Generative Adversarial Networks (GANs)

▶ Goal: Learn the true data distribution pdata(x) and generate new samples that
resemble real data.

▶ Key Components:
▶ Generator G(z): Transforms latent variables z ∼ pz(z) into data samples x̂ = G(z).
▶ Discriminator D(x): Outputs the probability that input x comes from pdata(x)

rather than G(z).
▶ Minimax Objective:

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))]

- D(x): maximizes the ability to distinguish real and fake samples. - G(z):
minimizes the chance of D(x) detecting G(z) as fake.

▶ Learning Process:
1 Discriminator D improves to classify real vs. generated data.
2 Generator G learns to fool D by producing realistic data.
3 Alternating updates drive G(z)→ pdata(x).
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Variational Autoencoders (VAEs): Overview

▶ Goal: Learn a probabilistic generative model to represent data x in a latent space
z.

▶ Key Components:

▶ Encoder qϕ(z|x): Maps data x to a latent distribution over z.

▶ Decoder pθ(x|z): Reconstructs data x from latent variable z.

▶ Applications:

▶ Data generation

▶ Dimensionality reduction

▶ Anomaly detection
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VAE Data Generation Process
Latent Space to Data Space Mapping

1. Training Phase
▶ Encoder learns q(z|x), outputs µ, σ
▶ Reparameterization: z = µ+ σ · ϵ
▶ Decoder learns p(x|z)
▶ Optimizes ELBO objective

2. Generation Phase
▶ Sample z ∼ N (0, 1)
▶ Generate via x̂ = Decoder(z)

Latent z ∼ N (0, 1)

Decoder

Generated x̂

Deterministic mapping: latent → data space
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Variational Autoencoders: ELBO Objective

▶ Problem: Computing p(x) directly is intractable:

p(x) =
∫

p(x|z) p(z) dz

▶ Solution: Maximize the Evidence Lower Bound (ELBO):

log p(x) ≥ L(θ, ϕ; x)

L = Ez∼qϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Reconstruction loss

− DKL
[
qϕ(z|x) ∥ p(z)

]︸ ︷︷ ︸
Regularization (KL divergence)

▶ Goal: Maximize L to make latent representations meaningful and generate
realistic samples.
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Reparameterization Trick in VAEs

▶ Problem: Direct sampling z ∼ qϕ(z|x) breaks gradient flow during
backpropagation.

▶ Solution: Reparameterization Trick

▶ Replace stochastic sampling with a differentiable transformation:

z = µϕ(x) + σϕ(x) · ϵ, ϵ ∼ N (0, I)

▶ Here:

▶ µϕ(x), σϕ(x): Encoder network outputs (mean and std dev).

▶ ϵ: Random noise, independent of ϕ.

▶ Effect:

▶ Enables gradient-based optimization over stochastic latent variables.
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FAug: External Data Augmentation

▶ Goal: Improve model robustness in data-scarce environments.

▶ Method:

▶ Clients upload feature embeddings instead of raw data.

▶ Server uses public datasets Dp and clients’ embeddings to train augmentation
models:

min
θ

∑
(xp,yp)

Ltask
(
ftask
θ (xp), yp

)︸ ︷︷ ︸
Task head

+λLembed
(
fembed
θ (xp),Embk

)︸ ︷︷ ︸
Embedding head

 (1)

▶ Augmented data is sent back to clients for local training.

▶ Effect: Enhances local dataset diversity without privacy leakage.
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Data-Level Methods (Part 2)

Data Privacy Protection:
▶ Homomorphic Encryption

▶ Differential Privacy (DP)

▶ Data Anonymization
External Data Utilization:
▶ Knowledge Distillation: FedMD, FedGKT

▶ Unsupervised Representation Learning: MOON, FedProc
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Data Anonymization: Concept

▶ What is Data Anonymization?

▶ The process of removing or obfuscating identifiable information from datasets.

▶ Why use it in FL?

▶ Ensures datasets cannot be linked back to specific individuals.

▶ Protects against deanonymization attacks on shared models.

▶ Example:

▶ Masking names, addresses, or unique identifiers before training.
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Data Anonymization: Details

▶ Techniques:

▶ K-Anonymity: Every record is indistinguishable from k− 1 others.

▶ L-Diversity: Sensitive attributes are sufficiently diverse in each group.

▶ Applications in FL:

▶ Preprocessing client datasets to remove PII before local training.

▶ Limitations:

▶ Over-anonymization can degrade data utility.

▶ Vulnerable to linkage attacks if auxiliary data is available.
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Homomorphic Encryption (HE): Concept

▶ What is HE?

▶ A cryptographic technique that allows computations on encrypted data.

▶ Ensures the server cannot access raw client data.

▶ Why use it in FL?

▶ Model updates may leak private information.

▶ HE enables secure aggregation without decrypting updates.

▶ Example:

▶ Client encrypts local update E(wi).

▶ Server computes E(
∑

wi) directly without accessing wi.
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Homomorphic Encryption (HE): Details

▶ Mathematical Property:

E(m1)⊛ E(m2) = E(m1 ⊙m2)

- ⊛: operation in ciphertext space - ⊙: corresponding plaintext operation
▶ Applications in FL:

▶ Secure aggregation of encrypted gradients.

▶ Server never sees plaintext model parameters.

▶ Challenges:

▶ High computational overhead.

▶ Large ciphertext size increases communication cost.
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Homomorphic Encryption (HE): Details

▶ Key Idea: Perform computations on encrypted data without decrypting it.

▶ Mathematical Property:

E(m1)⊛ E(m2) = E(m1 ⊙m2)

▶ ⊛: Operation on ciphertexts (e.g., multiplication)

▶ ⊙: Corresponding plaintext operation (e.g., addition)

▶ Example:
E(5) · E(3) = E(5 + 3) = E(8)

Server works directly on E(5) and E(3) without seeing 5, 3.

▶ Effect: Enables secure aggregation in FL but increases computational cost.
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Differential Privacy (DP): Concept

▶ What is DP?

▶ A framework to ensure that the presence/absence of any single record does not
significantly affect model outputs.

▶ Why use it in FL?

▶ Even without raw data sharing, updates can leak user-specific information.

▶ DP introduces noise to mask individual contributions.

▶ Key Idea:

▶ Add carefully calibrated noise to gradients or parameters.
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Differential Privacy (DP): Details

▶ Formal Definition:

Pr[M(D1) ∈ S] ≤ eϵ · Pr[M(D2) ∈ S] + δ

where D1 and D2 are neighboring datasets.

▶ In FL:
g̃ = g +N (0, σ2)

Adds Gaussian noise to gradient updates.

▶ Trade-offs:

▶ Pros: Strong theoretical privacy guarantees.

▶ Cons: Added noise may reduce model accuracy.
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Gradient Inversion Attack

▶ Problem: Even without raw data sharing, model updates can leak user-specific
information.

▶ How it Works:
▶ In Federated Learning, clients send gradients ∇L(w) to the server.
▶ A malicious server uses these gradients to reconstruct the original data:

Original data→ ∇L(w)→ Recovered data

▶ Real-world cases: - User face images reconstructed from gradients (image
classification). - Medical records inferred from model updates.

▶ An adversary can construct a machine learning model that uses gradients as
features to predict sensitive attributes of the client’s dataset (e.g., age, gender,
health status).

▶ Implication: Sensitive client data may be exposed even if raw data never leaves
the device.
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Diabetes Dataset Leakage

▶ Problem: Federated Learning clients may still reveal dataset-specific information
through gradients.

▶ Example:

▶ A client trains on a dataset containing only diabetes patients.

▶ The local gradients strongly reflect features specific to diabetes (e.g., high glucose
patterns).

▶ A malicious server analyzing gradients can infer:

▶ Presence of diabetes patients in the client dataset.

▶ Sensitive attributes such as age, gender, or lab test values.

▶ Solution: Apply Differential Privacy to add noise to gradients, preventing
dataset-level inferences.
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Why Gradients Reflect Age Bias – Setup

▶ Model: Assume a linear model for simplicity:

f(x;w) = w0 + wagexage +
∑

j̸=age
wjxj

▶ Loss Function: Mean Squared Error (MSE):

L(w) = 1

N

N∑
i=1

(f(xi;w)− yi)
2

▶ Gradient w.r.t. age weight:

∂L
∂wage

=
2

N

N∑
i=1

(f(xi;w)− yi) xi,age
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Effect of Age-Dominant Datasets on Gradient

▶ In a client dataset consisting only of elderly users:

xi,age ≫ 0 for all i

▶ Then each term in the gradient sum:

(f(xi;w)− yi) xi,age

will be scaled up by the large value of xi,age.
▶ Result: ∣∣∣∣ ∂L

∂wage

∣∣∣∣ becomes large even for moderate prediction errors.

▶ Implication: The server may infer the prevalence of elderly samples from the
magnitude of gradients.
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Comparison and Privacy Implications

▶ In balanced datasets:

▶ xage values vary across samples.
▶ Gradient terms may cancel out due to diverse age values.

▶ In age-biased datasets:

▶ xage is consistently large across all samples.
▶ Gradient becomes biased and more easily distinguishable.

▶ Privacy Risk:

▶ A malicious server could use the gradient magnitude as a signal
▶ → to infer demographic bias (e.g., elderly-only data)
▶ → or even build classifiers over gradients (property inference attacks)
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Model-Level Approaches (Part 1)

Federated Optimization:
▶ Achieves personalization of local models under statistical heterogeneity while

learning global information.
▶ Regularization: Adds penalty terms to the loss function to prevent overfitting.

▶ FedProx: Adds a proximal term to FedAvg for stability and faster convergence.
▶ FedCurv: Adapts EWC to prevent catastrophic forgetting.
▶ FedBN: Solves feature skew via batch normalization layers.
▶ MOON: Considers regularization between current and previous local models.

▶ Meta-learning: “Learning to learn” by leveraging prior experience.
▶ MAML: Applicable to any gradient-based method.
▶ Per-FedAvg: Personalized variant of FedAvg based on MAML.

▶ Multi-task Learning:
▶ MOCHA: Addresses high communication cost and fault tolerance.
▶ Ditto: Scalable federated multi-task learning framework.
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FedProx: Introduction

▶ What is FedProx?

▶ FedProx (Federated Proximal) is an algorithm designed for federated learning.

▶ It extends FedAvg to handle heterogeneous client data and systems.

▶ Key Goal:

▶ Mitigate the effects of statistical heterogeneity (Non-IID data).

▶ Ensure stable convergence even when clients train on different data distributions.
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Limitations of FedAvg

▶ FedAvg: Averages model updates from clients:

wt+1 =

K∑
k=1

nk
n wt+1

k

▶ Problem:

▶ In Non-IID settings, local models wk may diverge significantly.

▶ Aggregating these updates can slow down or destabilize training.

▶ Clients with heterogeneous computation or communication capacities
exacerbate the issue.
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FedProx Algorithm

▶ Key Idea:
▶ Add a proximal term to the client’s local objective:

min
w

fk(w) +
µ

2
∥w− wt∥2

where:

▶ fk(w): local loss on client k,
▶ wt: global model parameters,
▶ µ: proximal coefficient.

▶ Effect:
▶ Keeps client updates close to the current global model.
▶ Reduces drift between client and server models.
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Advantages of FedProx

▶ Handles System Heterogeneity:

▶ Supports clients with varying computational power and participation levels.

▶ Improves Convergence:

▶ Stabilizes federated learning in highly Non-IID scenarios.

▶ Flexibility:

▶ FedProx reduces to FedAvg when µ = 0.
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FedProx in Real-World Applications

▶ Domain: Healthcare Federated Learning

▶ Multiple hospitals collaborate to train a global model for disease prediction (e.g.,
diabetes, cancer).

▶ Patient data remains private and never leaves each hospital.

▶ Challenge:

▶ Data distributions differ significantly across hospitals (Non-IID):

▶ Hospital A: Mostly elderly patients

▶ Hospital B: Younger population

▶ Hospital C: Rare diseases
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Problem with FedAvg in Healthcare

▶ FedAvg limitation:

▶ Local models may diverge due to highly skewed data distributions.

▶ Global model fails to generalize across all hospitals.

▶ Example:

▶ Hospital A’s model prioritizes elderly patients’ features.

▶ Hospital B’s updates override A’s during aggregation.

▶ Result:

▶ Unstable training and poor global performance.
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FedProx Solution in Healthcare

▶ Key Mechanism:

▶ Adds a proximal term to local loss:

fk(w) +
µ

2
∥w− wt∥2

▶ Encourages hospitals’ updates to stay close to the global model.

▶ Effect:

▶ Reduces the impact of Non-IID data.

▶ Stabilizes training across diverse patient populations.
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Impact of FedProx in Healthcare

▶ Benefits:

▶ Improves model accuracy across all hospitals.

▶ Preserves privacy and complies with regulations (e.g., HIPAA, GDPR).

▶ Handles clients with different computational and communication resources.

▶ Real-World Deployment:

▶ Federated healthcare systems using FedProx have been explored for:

▶ COVID-19 detection from CT scans

▶ Diabetes prediction from EHRs (Electronic Health Records)
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Model-Level Approaches (Part 2)

Knowledge Transfer across Models:
▶ Knowledge Distillation:

▶ FedMD: Uses logits from local models for consensus building.
▶ FedGEN: Data-free knowledge distillation for statistical HFL.

▶ Transfer Learning:
▶ FedHealth: Federated transfer learning in healthcare.
▶ Def-KT: Point-to-point knowledge transfer without server participation.
▶ FedPer: Global base layers trained on server, personalized layers locally.

Architecture Sharing:
▶ Backbone Sharing: FedPer, FedRep
▶ Classifier Sharing: LG-FedAvg
▶ Other Part Sharing: HeteroFL
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Server-Level Approaches (Part 1)

Client Selection:
▶ Optimizes client subsets for participation in FL iterations.

▶ Favor: Experience-driven client selection framework.

▶ FedCS: Considers data resources, computation capacity, and channel conditions.
Client Clustering:
▶ FL+HC: Hierarchical clustering based on similarity of updates.

▶ CFL: Clusters clients by cosine similarity of gradient updates.

▶ FLAME: Detects adversarial updates via clustering.
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Server-Level Approaches (Part 2)

Decentralized Communication:
▶ Removes dependency on a central server for robustness.

▶ BrainTorrent: Peer-to-peer FL framework.

▶ Combo: Segmented gossip approach.

▶ ProxyFL: Clients exchange proxy models for privacy.

▶ BFLC: Blockchain-based decentralized FL framework.
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Future Directions (Part 1)

▶ Improving Communication Efficiency:

▶ Reduce costs and delays from heterogeneous networks.

▶ Balance communication efficiency and model accuracy.

▶ Federated Fairness:

▶ Address free-rider issues and bias towards frequent contributors.

▶ Strengthening Privacy Protection:

▶ Fine-grained privacy constraints per client and sample.
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Future Directions (Part 2)

Attack Robustness:
▶ Poisoning Attacks: Data or model poisoning (e.g., DBA attack).

▶ Inference Attacks: Infers sensitive client data.

▶ Defense Strategies:

▶ CRFL: Gradient clipping and noise addition.

▶ RBML-DFL: Blockchain-based robust FL.

▶ TEE: Trusted Execution Environments for secure computation.
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Future Directions (Part 3)

Establishing Uniform Benchmarks:
▶ Develop widely recognized benchmark datasets and test frameworks.

▶ Existing FL Systems: FedML, FedScale

▶ Specialized FL Systems: FedReIDBench, pFL-Bench

▶ Datasets: LEAF, object detection datasets

▶ Importance: Promotes reproducibility and fair evaluation of security, convergence,
accuracy, and generalization.
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Overview

▶ Vertical Federated Learning (VFL) enables multiple organizations, holding
different features of the same user group, to collaboratively train machine learning
models without exposing raw data or model parameters.

▶ Given the rapid progress in VFL research and applications, this survey provides a
comprehensive review of:

▶ VFL concepts and algorithms

▶ Effectiveness, efficiency, privacy, and fairness

▶ Privacy attacks and defense strategies

▶ A unified framework “VFLow”

▶ Industrial applications and open challenges
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Three Types of Federated Learning

▶ Federated Learning (FL) is a machine learning paradigm where multiple parties
collaboratively build models without centralizing their data.

▶ Proposed by Google in 2016 for cross-device scenarios.

▶ Extended to cross-silo collaboration, where trusted organizations join to train
models.
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Three Types of Federated Learning
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Three Main Categories of FL

▶ Horizontal FL (HFL): Parties hold data with different users but the same feature
space

▶ Vertical FL (VFL): Parties share the same users (Sample) but have different
feature spaces

▶ Federated Transfer Learning (FTL): Both users and features differ

▶ HFL vs. VFL:

▶ HFL shares model updates (e.g., weights, gradients)

▶ VFL exchanges intermediate results

▶ VFL typically belongs to cross-silo FL
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What is Vertical Federated Learning (VFL)?

▶ Definition: VFL enables multiple parties with different feature spaces but
shared sample IDs to jointly train a model without sharing raw data.

▶ Scenario:

▶ Party A: (XA, y) → features XA and labels y

▶ Party B: XB → different features XB for same users

▶ Goal: Learn model parameters collaboratively:

ŷ = f(WAXA + WBXB)
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Basic Architecture of VFL

▶ Parties Involved:

▶ Active Party: owns labels y

▶ Passive Party: no labels

▶ Training Process:

▶ Each party computes local output:

zA = WAXA, zB = WBXB

▶ Aggregate logits securely:
z = zA + zB

▶ Compute loss and gradients collaboratively without revealing raw data.

▶ Key Technique: Secure computation (e.g., encryption, secure aggregation).
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Loss Computation and Gradient Update

▶ Loss Function (Active Party):

L =
1

N
∑

i
ℓ(f(zi

A + zi
B), yi)

▶ Gradient Sharing (Secure):

▶ Active party computes gradient:
∇zA ,∇zB

▶ Send encrypted gradients to parties to update WA,WB:

WA ←WA − η∇WA , WB ←WB − η∇WB
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Applications and Challenges

▶ Applications:

▶ Finance: Bank A (transaction data), Bank B (credit ratings)

▶ Healthcare: Hospital A (genetic data), Hospital B (imaging data)

▶ Challenges:

▶ Data privacy (encryption overhead)

▶ Communication cost

▶ Label availability (only one party has labels)
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Horizontal vs. Vertical FL

Aspect Horizontal FL (HFL) Vertical FL (VFL)

Data Split Same features, different users Same users, different features
Parties’ Data (XA, yA), (XB, yB): different user

IDs
Party A: (XA, y), Party B: (XB)

Goal Train a global model over all users Combine feature spaces for better
predictions

Typical Scenario Hospitals in different regions Banks with complementary cus-
tomer information

Key Challenge Data heterogeneity (Non-IID) Feature alignment & secure aggre-
gation

Table: Comparison between Horizontal FL and Vertical FL.
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Horizontal vs. Vertical FL

▶ HFL Equation:

ŷ = f(WX), X = Union of all clients’ data

▶ VFL Equation:
ŷ = f(WAXA + WBXB)
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Vertical Federated Learning (VFL) in Detail

▶ Definition: Parties hold different features for the same user samples and
collaborate to train a model.

▶ Roles of Parties:

▶ Active Party: Holds label information

▶ Passive Parties: Hold only features

▶ Why VFL?

▶ Data silo issues in industry (fragmented datasets across organizations)

▶ Rising privacy and data security regulations worldwide
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VFL Framework – Problem Definition and Model Structure

▶ Goal: Collaboratively train models while preserving data privacy and security

▶ Model decomposition:

▶ Local models Gk

▶ Global module FK

▶ Loss function:

min
Θ
L(Θ) =

1

N

N∑
i=1

f(Θ; xi, yi)
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VFL Variants and System Architecture

▶ splitVFL: Trainable FK (e.g., splitNN)

▶ aggVFL: Aggregation-only FK

▶ Some variants where active parties hold no features
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VFL Training Protocol

1 Privacy-Preserving Entity Alignment:

▶ Private Set Intersection (PSI) for aligning sample IDs
2 Privacy-Preserving Training:

▶ Gradient descent on local data

▶ Exchange of intermediate outputs Hk and gradients ∂L/∂Hk
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Improving Communication Efficiency

▶ Key techniques:

▶ Multiple client updates (FedBCD)

▶ Asynchronous coordination (GP-AVFL)

▶ One-shot communication

▶ Compression and feature selection
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Improving Effectiveness

▶ Self-Supervised Learning (SSL): FedHSSL

▶ Semi-Supervised Learning (Semi-SL): FedCVT

▶ Knowledge Distillation (KD): VFL-Infer

▶ Transfer Learning (TL): SFTL
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Privacy-Preserving Protocols

▶ P-1: Basic protocol

▶ P-2: Encrypt intermediate results (e.g., Homomorphic Encryption)

▶ P-3: No training info exposed (MPC)

▶ P-4: Even trained models are protected
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Data Inference Attacks and Defenses

▶ Label Inference Attacks: Infer labels from gradients

▶ Feature Inference Attacks: Model inversion, gradient inversion

▶ Defenses:

▶ Cryptographic: HE, MPC

▶ Non-cryptographic: Noise injection
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Backdoor Attacks and Defenses

▶ Attack types:

▶ Targeted: LRB, ADI

▶ Non-targeted: Adversarial samples

▶ Defenses: CAE, DCAE, RVFR
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VFLow Framework and Applications

▶ VFLow: Balances utility, privacy, and efficiency

▶ Applications:

▶ Recommendation systems

▶ Financial risk management

▶ Healthcare (e.g., MIMIC-III dataset)
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Conclusions and Future Directions

▶ Open challenges:

▶ Lack of interoperability across platforms

▶ Explainability and fairness

▶ Automated VFL

▶ Takeaway: VFL is a promising solution for cross-organization data silos
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Zhan et al. (2020) Review

▶ Title: A Learning-based Incentive Mechanism for FL

▶ Authors: Yufeng Zhan, Peng Li, et al.

▶ Summary:

▶ IoT devices generate massive edge data.

▶ Centralized DL faces bandwidth, storage, privacy challenges.

▶ FL enables edge training without exposing raw data.

▶ Proposes a Deep Reinforcement Learning (DRL)-based incentive mechanism
for FL.
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Federated Learning (FL): Definition

▶ FL enables collaborative training across distributed nodes.

▶ Process:
1 Server distributes initial model.
2 Edge nodes train locally.
3 Nodes send updates, not raw data.
4 Server aggregates updates into global model.

▶ Advantages:

▶ Data privacy preserved.

▶ Handles distributed, large-scale datasets.
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Challenges for Incentive Mechanisms (1/2)

▶ Why incentives?

▶ Edge nodes need motivation to contribute resources.

▶ FL-specific difficulties:

▶ Information un-sharing:

▶ Nodes keep local decisions private (e.g., data amount).

▶ Contribution evaluation:

▶ Non-linear relation between accuracy and data amount.

▶ Hard to predict data quality/model impact.
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Challenges for Incentive Mechanisms (2/2)

▶ Freshness Requirements:

▶ Many IoT apps require fresh data for training.

▶ Existing incentive designs fail:

▶ Assumes shared information or predictable contributions.

▶ Lacks dynamic adaptability.
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Proposed Solution: Game-Theoretic Framework

▶ Stackelberg Game:

▶ Leader: Parameter server chooses payment τ .

▶ Followers: Edge nodes choose participation level xn.

▶ Objective:

▶ Server: maximize u(τ) = λg(X)− τ .

▶ Edge nodes: maximize un(xn) =
xnτ∑

xm
− cost.
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Proposed Solution: Game-Theoretic Framework
▶ Stackelberg Game:

▶ Leader: Parameter server chooses payment τ .
▶ Followers: Edge nodes choose participation level xn.

▶ Objective:
▶ Server:

u(τ) = λg(X)− τ

▶ Edge nodes:
un(xn) =

xnτ∑
xm
− cost

▶ Notation:
▶ τ : Payment offered by the server to incentivize participation.
▶ xn: Participation level of edge node n.
▶ X =

∑
xn: Total participation from all edge nodes.

▶ λ: Utility scaling factor for the server.
▶ g(X): Benefit function of aggregated participation.
▶ cost: Local cost incurred by each edge node.
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What is a Stackelberg Game?

▶ A strategic game involving two roles:
▶ Leader: Moves first and selects a strategy.
▶ Follower: Observes the leader’s decision and responds optimally.

▶ Key Characteristics:
▶ Sequential decision-making: leader acts first, follower reacts.
▶ The leader anticipates the follower’s best response.

▶ Example:
▶ A company (leader) sets a product price.
▶ Consumers (followers) decide how much to buy based on the price.

▶ Applications in FL:
▶ Server (leader): determines incentives.
▶ Clients (followers): choose participation levels in response.
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Game Analysis: Full Information

▶ For fixed τ , unique Nash equilibrium exists.

▶ Stackelberg equilibrium proven to exist for leader-follower setup.

▶ Server anticipates node reactions when setting payment.
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DRL-based Incentive Mechanism (1/2)

▶ Why DRL?

▶ Overcomes incomplete info and dynamic environments.

▶ Parameter Server:

▶ Learns optimal payment strategy π(τt|st, θ).

▶ Edge Nodes:

▶ Learn participation strategies πn(xn
t |sn

t , θn).
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DRL-based Incentive Mechanism (2/2)

▶ Learning Process:
1 Server observes state st, selects payment τt.
2 Edge nodes react and train models locally.
3 Server aggregates models, updates policy using PPO.

▶ Algorithm:

▶ Actor-Critic framework with PPO optimizer.
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PPO and Server Policy Updates (Concept)

▶ Server aggregates models:
▶ Clients perform local training and send updated models (wk) to the server.
▶ The server aggregates them to produce a new global model:

wt+1 =
∑

k

nk
n wk

▶ Server updates policy using Proximal Policy Optimization (PPO):
▶ Learns a policy πθ(τ |s) to decide payments τ .
▶ Optimizes the PPO objective:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
where rt(θ) =

πθ(τ |s)
πθold (τ |s)

.
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PPO Objective: Intuition

▶ Goal: Improve the policy πθ(τ |s) smoothly without large destructive updates.

▶ Key Idea:

▶ Avoid ”big jumps” in policy updates by restricting changes to stay close to the old
policy πθold .

▶ Introduce a probability ratio:
rt(θ) =

πθ(τ |s)
πθold(τ |s)

- rt(θ) > 1: action τ becomes more likely. - rt(θ) < 1: action τ becomes less likely.

▶ Advantage: Ât measures how good the action is at time t.
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PPO Objective: Clipping Mechanism

▶ Objective function:

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
▶ Clipping effect:

▶ Prevents rt(θ) from moving too far from 1.

▶ If rt(θ) tries to exceed (1 + ϵ) or drop below (1− ϵ), the objective is flattened.

▶ Why?

▶ Stabilizes training and avoids catastrophic policy updates.
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Clip Function in PPO

Definition:

clip(x, a, b) =


a if x < a,
x if a ≤ x ≤ b,
b if x > b

Here: a = 1− ϵ, b = 1 + ϵ x

clip(x, a, b)

a

b
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PPO and Server Policy Updates (Diagram)

Server (πθ(τ |s))

Client 1 Client 2 Client 3

τ1 τ2
τ3w1 w2 w3
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Actor-Critic Framework in FL
▶ Actor:

▶ Chooses payments τ for clients based on state s.
▶ Represents the policy πθ(τ |s).

▶ Critic:
▶ Estimates the value function Vϕ(s) and advantage Ât.
▶ Provides feedback for improving the Actor’s policy.

Actor (πθ(τ |s))

Critic (Vϕ(s))

Clients
Payment τ

Feedback (s, r)
Advantage Ât

Qingfeng Liu Hosei University Part IV: Incentive Mechanism for FL



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
94/113

System Model: Utility Functions

▶ Edge Node Utility:

un(xn) =
xnτ∑

xm
− cn

comxn − cn
cmpxn

▶ Server Utility:
u(τ) = λg(X)− τ, X =

∑
xn
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Performance Evaluation: Convergence

▶ Experiment Setup:

▶ Tensorflow 1.9, Ubuntu 16.04

▶ g(X) = 10 ln(1 + X)

▶ Results:

▶ Server payment converges to Stackelberg equilibrium.

▶ Edge node strategies converge to Nash equilibrium.
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Performance: Training Cost Impact

▶ Higher node cost ⇒ lower participation.

▶ Server utility decreases with higher costs.

▶ DRL mechanism outperforms random/greedy baselines.
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Performance: Node Count Impact

▶ More edge nodes ⇒ server utility increases.

▶ Average node utility decreases (competition effect).

▶ DRL adapts to changing system size.
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Conclusion

▶ Proposed DRL-based incentive mechanism for FL.

▶ Proved existence of equilibria.

▶ Experiments show superior performance.

▶ Enables practical, dynamic FL in IoT.
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Incentive‑Compatible Federated Learning

@Jinlin University

Qingfeng Liu Hosei University

August 14, 2025

Qingfeng Liu Hosei University Incentive‑Compatible Federated Learning



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
100/113

Javaherian et al. (2025) Review

▶ Title: Incentive‑Compatible Federated Learning with Stackelberg Game Modeling

▶ Authors: Simin Javaherian, Bryce Turney, Li Chen, Nian‑Feng Tzeng

▶ Published: January 5, 2025 (arXiv preprint)

Summary:
▶ Proposes a novel federated learning framework (FLamma, FL+γ) based on

Stackelberg game theory.

▶ Addresses fairness and incentivization among heterogeneous clients.

▶ Introduces a decay factor (γ) for balancing client contributions dynamically.

▶ Derives optimal strategies for the server (leader) and clients (followers) to reach
Stackelberg equilibrium.
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Current Challenges in FL

▶ Heterogeneous environments:

▶ Clients differ in resources and capabilities

▶ Can reduce system-wide performance

▶ Limitations of existing approaches:

▶ Focus on maximizing global model accuracy

▶ Often neglect fairness among clients and system efficiency

▶ Assume clients are always motivated to participate

▶ Need for Incentives:

▶ FL systems require incentives to attract and retain client participation
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Introducing FLamma

▶ FLamma: A new FL framework based on an adaptive gamma-based Stackelberg
game

▶ Goals:

▶ Address existing shortcomings

▶ Promote fairness by modeling client behavior and resource allocation

▶ Key Idea:

▶ Server acts as Leader and dynamically adjusts decay factor γ

▶ Clients act as Followers and choose their local epochs τi to maximize utility
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Stackelberg Game for Incentive Design

▶ Game-Theoretic Approach:

▶ Aligns client goals with the network-wide objective

▶ Stackelberg Game Concept:

▶ Leader (Server) acts first, setting decay factor γ

▶ Followers (Clients) observe and respond by selecting optimal τi

▶ Goal: Achieve Stackelberg Equilibrium for fairness and stability
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Utility Design in FLamma

▶ Server Utility:

Userver(γ, τi) =
∑[

γ ·
(
1− ∥w

t
i − wt∥
∥wt∥

+ τi

)]
− t · γ2

▶ Client Utility:

Ui(γ, τi, τ−i) = γ ·
(
1− ∥w

t
i − wt∥
∥wt∥

)
· τi − ci · τ2i

▶ Individual Rationality (IR):

Ui(γ, τi, τ−i) ≥ 0

Qingfeng Liu Hosei University Incentive‑Compatible Federated Learning



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
105/113

Optimal Strategies for Server and Clients

▶ Optimal Local Epoch for Client i:

τ∗i =
γ ·

(
1− ∥wt

i−wt∥
∥wt∥

)
2ci

▶ Optimal Decay Factor for Server:

γ∗ =

(
1− ∥wt

i−wt∥
∥wt∥

)
· ci

2t · ci −
(
1− ∥wt

i−wt∥
∥wt∥

)
▶ Existence of Nash Equilibrium:

▶ Subgames have at least one Nash equilibrium
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FLamma Algorithm Flow

1 Server Side:

▶ Calculate client contributions ωi

▶ Select client subset St

▶ Broadcast (wt, γ) to selected clients
2 Client Side:

▶ Choose τk to maximize utility

▶ Train and send updates to server
3 Server Aggregates:

▶ Update global model wt+1 and decay factor γ
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How FLamma Promotes Fairness

▶ Decay Factor γ:

▶ Dynamically reduces influence of dominant clients

▶ Prevents Overfitting:

▶ Ensures balanced contribution from all clients

▶ Result:

▶ Lower accuracy variance among clients

▶ Improved system robustness
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Convergence Analysis of FLamma

▶ Competitive Convergence Rate

▶ Decay Factor γ:

▶ Ensures stability

▶ Limits excessive influence of high-local-epoch clients

▶ FedAvg Comparison:

▶ FLamma achieves similar behavior with bounded γ
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Experimental Setup and Results

▶ Datasets: MNIST, FashionMNIST, CIFAR10

▶ Models: LeNet-5, ResNet-18

▶ Baselines: FedAvg, FedProx, q-FFL, Incentivization

▶ Metrics: Test Accuracy, Accuracy Variance
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Results: IID Data

▶ FLamma outperforms baselines in both accuracy and fairness

▶ CIFAR10: FLamma improves accuracy by 11.59% and reduces variance by 82.6%
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Results: Non-IID Data

▶ FLamma shows significant improvements over baselines in challenging non-IID
settings

▶ CIFAR10: 120.93% accuracy improvement

▶ FMNIST: 99.09% variance reduction
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Strengths and Limitations

▶ Strengths:

▶ Significant fairness improvement

▶ Maintains competitive global accuracy

▶ Encourages active client participation

▶ Limitations:

▶ Precise contribution measurement is challenging

▶ Gamma tuning requires experimentation
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Conclusions and Future Work

▶ FLamma leverages Stackelberg game modeling for incentive-compatible federated
learning

▶ Promotes fairness by dynamically adjusting client contributions

▶ Future Directions:

▶ Automate gamma tuning

▶ Integrate reinforcement learning for dynamic optimization
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