Econometrics Lecture Notes-Panel Data Analysis

Qingfeng Liu

Otaru University of Commerce

∃ >

Overview of OLS for Linear Models

Linear Panel Data Models: Basics Linear Panel Data Models: Extensions

assumptions for OLS

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

 $\hat{\beta} = (\mathbf{x}'\mathbf{x})^{-1}\mathbf{x}'y$

- Var $(\varepsilon_i) = \sigma^2$ for $i = 1, \cdots, n$. Homogeneity.
- Cov $(\varepsilon_i \varepsilon_j) = 0$ for $i \neq j$. No series correlation.
- $E(\varepsilon_i|x_i) = 0$ ($E(\varepsilon_i x_i) = 0$). Exogeneity.

伺 と く ヨ と く ヨ と

properties of OLS

•
$$E(\hat{eta}) = eta$$
, unbiased.

②
$$\lim_{n o\infty}\hateta=eta$$
, consistency.

• $Var(\hat{\beta}) \leq Var(\tilde{\beta})$, where is any other linear estimator, efficiency.

伺 と く ヨ と く ヨ と

What happens without assumptions 1.-3.?

- Without assumption 1. (heteroscedasticity), $\hat{\beta}$ will be inefficient.
- **②** Without assumption 2. (series correlation), $\hat{\beta}$ will be inefficient.
- **③** Without assumption 3. (endogenity), $\hat{\beta}$ will be inconsistent.

I ≡ →

Solutions

GLS for models with heteroscedasticity or series correlation.
IV (2SLS, GMM) for models with endogenity.

What is Panel Data

Panel data repeated observations on the same cross section, observed for several time periods. (Longitudinal data). Some examples.

- More observations increase precision in estimation.
- Consistent estimation of the fixed effects model, solving problem of omitted variables bias.
- Learning more time series dynamics.

伺 ト イ ヨ ト イ ヨ ト

Outline

- Several models and corresponding estimation methods.
- Hausman Test.
- Empirical analysis examples.

I ≡ →

Panel Data Models

General Expression

$$y_{it} = \alpha_{it} + \mathbf{x}_{it}\beta + \varepsilon_{it}, \ i = 1, \cdots, n, \ t = 1, \cdots, T.$$

Pooled Models
 $y_{it} = \alpha + \mathbf{x}_{it}\beta + \varepsilon_{it},$

$$E\left(\boldsymbol{\varepsilon}|\mathbf{X}\right) = \mathbf{0}$$

Estimation method for Pooled Models OLS

/□ ▶ < 글 ▶ < 글

Panel Data Models

For now, we assume Exogeneity

$$E\left[\varepsilon_{it}|\alpha_{i},\mathbf{x}_{i1},\cdots,\mathbf{x}_{iT}\right]=0, \ t=1,\cdots,T.$$

Rondom Effect Model (RE) α_i (Individual Effect) is random variable and uncorrelated with \mathbf{x}_{it} ,

$$y_{it} = \alpha_i + \mathbf{x}_{it}\beta + \varepsilon_{it},$$

Estimatin Method for RE Model Pooled OLS works well for RE model.

伺 ト イ ヨ ト イ ヨ

Panel Data Models

Fixed Effect Model (FE) α_i is random variable and correlated with \mathbf{x}_{it} ,

$$y_{it} = \alpha_i + \mathbf{x}_{it}\beta + \varepsilon_{it},$$

Estimation method for FE Model Pooled OLS is inconsistent for FE, and does not work well for FE model.

A B > A B >

Basic Estimation Methods for RE Model

- Pooled OLS
- Between estimator, between estimator is the OLS estimator of following equation

$$\bar{y}_i = \alpha + \bar{\mathbf{x}}_i \beta + (\alpha_i - \alpha + \bar{\varepsilon}_i)$$

where $\bar{y}_i = 1/T \sum_{t=1}^T y_{it}$, $\bar{\mathbf{x}}_i = 1/T \sum_{t=1}^T \mathbf{x}_{it}$ and $\bar{\varepsilon}_i = 1/T \sum_{t=1}^T \varepsilon_{it}$.

4 B b 4 B

Basic Estimation Methods for FE Model

- **Pooled OLS** and **Between estimators** do not work well for FE model (inconsistent).
- Within estimator, subtract $y_{it} = \alpha_i + \mathbf{x}'_{it}\beta + \varepsilon_{it}$ from $\bar{y}_i = \mathbf{a}_i + \bar{\mathbf{x}}'_i\beta + \bar{\varepsilon}_i$ yields

$$y_{it} - \bar{y}_i = \left(\mathbf{x}_{it} - \bar{\mathbf{x}}_i\right)' \beta + \left(\varepsilon_{it} - \bar{\varepsilon}_i\right)$$
(1)

LSDV

$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_N \end{bmatrix} = \begin{bmatrix} \mathbf{e} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{e} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix} + \begin{bmatrix} \mathbf{X}_1 \\ \vdots \\ \mathbf{X}_N \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$

Within estimator is the OLS estimator of eq.(1). Notice that no α_i in eq.(1).

• Within estimator of FE model is consistent.

Basic Estimation Method for FE Model

• First-Differences estimator, subtracting y_{i,t-1} from y_{it} yield

$$y_{it} - y_{i,t-1} = (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})' \beta + (\varepsilon_{it} - \varepsilon_{i,t-1})$$
(2)

- **First-Differences estimator** is the OLS estimator of the above equation.
- First-Differences estimator of FE model is consistent.

4 3 6 4 3

Consistency and efficiency

Table 21.1. Linear Panel Model: Common Estimators and Models^a

	Assumed Model			
Estimator of β	Pooled (21.1)	Random Effects (21.3) and (21.5)	Fixed Effects (21.3) Only	
Pooled OLS (21.1)	Consistent	Consistent	Inconsistent	
Between (21.7)	Consistent	Consistent	Inconsistent	
Within (or Fixed Effects) (21.8)	Consistent	Consistent	Consistent	
First Differences (21.9)	Consistent	Consistent	Consistent	
Random Effects (21.10)	Consistent	Consistent	Inconsistent	

^{*a*} This table considers only consistency of estimators of β . For correct computation of standard errors see Section 21.2.3.

(日) (同) (三) (三)

GLS Estimator for RE Models (RE Estimator) I.

RE Model

$$y_{it} = \alpha_i + \mathbf{X}'_{it}\beta + \varepsilon_{it}$$

$$y_{it} = \mathbf{X}'_{it}\beta + (\alpha_i + \varepsilon_{it})$$

$$y_{it} = \mathbf{X}'_{it}\beta + u_{it}$$

where
$$u_{it} = (\alpha_i + \varepsilon_{it})$$

 u_{it} is series correlated over t OLS is not efficient

$$\operatorname{Cov}[(\alpha_i + \varepsilon_{it}), (\alpha_i + \varepsilon_{is})] = \begin{cases} \sigma_{\alpha}^2, & t \neq s, \\ \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2, & t = s. \end{cases}$$

→ 3 → < 3</p>

GLS Estimator for RE Models (RE Estimator) II.

GLS Estimator Use GLS to deal with series correlation

$$\Omega^{-1/2} \mathbf{y}_{i} = \Omega^{-1/2} \mathbf{W}_{i} \delta + \Omega^{-1/2} \left(\alpha_{i} + \boldsymbol{\varepsilon}_{i} \right)$$
$$y_{it} - \hat{\lambda} \bar{y}_{i} = \left(1 - \hat{\lambda} \right) \mu + \left(\mathbf{x}_{it} - \hat{\lambda} \bar{\mathbf{x}}_{i} \right)' \beta + v_{it}, \tag{3}$$

where $v_{it} = (1 - \hat{\lambda}) \alpha_i + (\varepsilon_{it} - \hat{\lambda}\hat{\varepsilon}_i)$ and $\hat{\lambda}$ is consistent estimator for $\lambda = 1 - \sigma_{\varepsilon} / (T\sigma_{\alpha}^2 + \sigma_{\varepsilon}^2)^{1/2}$.

- The feasible **GLS (FGLS) estimator** is the OLS estimator of β in model (3).
- **FGLS** is consistent and full efficient for RE models, but is inconsistent for FE models.

伺 ト イ ヨ ト イ ヨ ト

Hausman Test for Panel Data Models I.

How to distinguish between RE and FE Use Hausman Test. Idea Using the fact that Within estimator is consistent and **FGLS** is inconsistent for FE models.

→ Ξ → < Ξ</p>

Hausman Test for Panel Data Models II.

Hausman Test statistics

• When α_i and ε_{it} both are *i.i.d*.

$$\mathbf{H} = \left(\widetilde{\boldsymbol{\beta}}_{1,\mathrm{RE}} - \widehat{\boldsymbol{\beta}}_{1,\mathrm{W}}\right)' \left[\widehat{\mathbf{V}}[\widehat{\boldsymbol{\beta}}_{1,\mathrm{W}}] - \widehat{\mathbf{V}}[\widetilde{\boldsymbol{\beta}}_{1,\mathrm{RE}}]\right]^{-1} \left(\widetilde{\boldsymbol{\beta}}_{1,\mathrm{RE}} - \widehat{\boldsymbol{\beta}}_{1,\mathrm{W}}\right),$$

Otherwise, use Robust Hausman Test

$$\mathbf{H}_{\text{Robust}} = \left(\widetilde{\boldsymbol{\beta}}_{1,\text{RE}} - \widehat{\boldsymbol{\beta}}_{1,\text{W}}\right)' \left[\widehat{\mathbf{V}}_{\text{Boot}}[\widetilde{\boldsymbol{\beta}}_{1,\text{RE}} - \widehat{\boldsymbol{\beta}}_{1,\text{W}}]\right]^{-1} \left(\widetilde{\boldsymbol{\beta}}_{1,\text{RE}} - \widehat{\boldsymbol{\beta}}_{1,\text{W}}\right),$$

$$\widehat{\mathbf{V}}_{\text{Boot}}[\widetilde{\boldsymbol{\beta}}_{1,\text{RE}} - \widehat{\boldsymbol{\beta}}_{1,\text{W}}] = \frac{1}{B-1} \sum_{b=1}^{B} \left(\widehat{\boldsymbol{\delta}}_{b} - \overline{\widehat{\boldsymbol{\delta}}}\right) \left(\widehat{\boldsymbol{\delta}}_{b} - \overline{\widehat{\boldsymbol{\delta}}}\right)',$$
(4)

Ignoring whether α_i and ε_{it} both are *i.i.d.*, just use Robust Hausman Test at all times.

18/42

Within vs. First Differences Estimator (FD) for FE Models

Within

Ι.

$$y_{it} - \bar{y}_i = (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \beta + (\varepsilon_{it} - \bar{\varepsilon}_i)$$
(5)

$$v_{t} = (\varepsilon_{it} - \overline{\varepsilon}_{i})$$

$$cov (v_{t}, v_{t-1}) = E ((\varepsilon_{it} - \overline{\varepsilon}_{i}) (\varepsilon_{i,t-1} - \overline{\varepsilon}_{i}))$$

$$= 0 - \frac{\sigma_{\varepsilon}^{2}}{T} - \frac{\sigma_{\varepsilon}^{2}}{T} + \frac{\sigma_{\varepsilon}^{2}}{T}$$

$$= -\frac{\sigma_{\varepsilon}^{2}}{T}$$

Within vs. First Differences Estimator (FD) for FE Models II.

FD

$$y_{it} - y_{i,t-1} = \left(\mathbf{x}_{it} - \mathbf{x}_{i,t-1}\right)' \beta + (\varepsilon_{it} - \varepsilon_{i,t-1})$$
(6)

$$\begin{split} \boldsymbol{\omega}_{t} &= (\varepsilon_{it} - \varepsilon_{i,t-1})\\ \boldsymbol{cov}\left(\boldsymbol{\omega}_{t}, \boldsymbol{\omega}_{t-1}\right) &= \boldsymbol{E}\left(\left(\varepsilon_{it} - \varepsilon_{i,t-1}\right)\left(\varepsilon_{i,t-1} - \varepsilon_{i,t-2}\right)\right)\\ &= \boldsymbol{0} - \boldsymbol{0} - \sigma_{\varepsilon}^{2} - \boldsymbol{0}\\ &= \sigma_{\varepsilon}^{2} \end{split}$$

.≣ →

Time-invariant variable in FE models

۹

$$y_{it} = \alpha_i + \beta_1 x_{1t} + \beta_2 d_{it} + \varepsilon_{it}$$

when d_{it} is time-invariant, $d_{it} = d_i$, then

$$y_{it} = \alpha_i + \beta_1 x_{1t} + \beta_2 d_i + \varepsilon_{it}$$

- The β_2 can not be estimated by Within or FD.
- If we want to estimate β₂, other methods are required (see following slides).

• • = • • = •

Panel robust estimate of asymptotic variance

Genaral expression of Panel Data models

$$\mathbf{\widetilde{y}}_i = \mathbf{\widetilde{W}}_i \mathbf{\theta} + \mathbf{u}_i$$

Three panel robust estimates of asymptotic variance

 $E(u_{it}|w_{it}) = 0$, u_{it} are independent over *i*, $V(u_{it})$ and $cov(u_{it}, u_{is})$ both are time-variant (means heteroscedastic and series dependent)

1.

$$\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}_{\text{OLS}}] = \left[\sum_{i=1}^{N} \widetilde{\mathbf{W}}_{i}^{'} \widetilde{\mathbf{W}}_{i}\right]^{-1} \sum_{i=1}^{N} \widetilde{\mathbf{W}}_{i}^{'} \widehat{\mathbf{u}}_{i} \widehat{\mathbf{u}}_{i}^{'} \widetilde{\mathbf{W}}_{i} \left[\sum_{i=1}^{N} \widetilde{\mathbf{W}}_{i}^{'} \widetilde{\mathbf{W}}_{i}\right]^{-1},$$

Panel robust estimate of asymptotic variance

2.

$$\widehat{\mathbf{V}}[\widehat{\boldsymbol{\theta}}_{\mathrm{OLS}}] = \left[\sum_{i=1}^{N}\sum_{t=1}^{T}\widetilde{\mathbf{w}}_{it}\widetilde{\mathbf{w}}_{it}'\right]^{-1}\sum_{i=1}^{N}\sum_{t=1}^{T}\sum_{s=1}^{T}\widetilde{\mathbf{w}}_{it}\widetilde{\mathbf{w}}_{is}'\widehat{u}_{it}\widehat{u}_{is}\left[\sum_{i=1}^{N}\sum_{t=1}^{T}\widetilde{\mathbf{w}}_{it}\widetilde{\mathbf{w}}_{it}'\right]^{-1},$$

Panel robust estimate of asymptotic variance III.

3. Bootstrap estimator

$$\widehat{\mathbf{V}}_{\text{Boot}}[\widehat{\boldsymbol{\theta}}] = \frac{1}{B-1} \sum_{b=1}^{B} \left(\widehat{\boldsymbol{\theta}}_{b} - \overline{\widehat{\boldsymbol{\theta}}}\right) \left(\widehat{\boldsymbol{\theta}}_{b} - \overline{\widehat{\boldsymbol{\theta}}}\right)',$$

Conditional MLE

Assuming normal distribution, **MLE** gets the same results of **Within** estimator

$$L_{\text{COND}}(\beta, \sigma^{2}, \alpha) = \prod_{i=1}^{N} f(y_{i1}, \dots, y_{iT} | \bar{y}_{i})$$

$$= \prod_{i=1}^{N} \frac{f(y_{i1}, \dots, y_{iT}, \bar{y}_{i})}{f(\bar{y}_{i})}$$

$$= \prod_{i=1}^{N} \frac{(2\pi\sigma^{2})^{-T/2}}{(2\pi\sigma^{2}/T)^{-1/2}} \exp\left\{\sum_{t=1}^{T} -[(y_{it} - \mathbf{x}'_{it}\beta)^{2} + (\bar{y}_{i} - \bar{\mathbf{x}}'_{i}\beta)^{2}]/2\sigma^{2}\right\}.$$
(21.38)

- - E + - E +

Estimate alpha using Within Estimate

$$\widehat{\alpha}_i = \overline{y}_i - \overline{\mathbf{x}}'_i \widehat{\boldsymbol{\beta}}_{\mathbf{W}}, \quad i = 1, \dots, N.$$

T must be large for consistency of $\hat{\alpha}_i$.

Other Issues

- Unbalanced panel data
- Measurement error

∃ → < ∃</p>

Example of application, labor supply to wages

• The data on 532 males for each of the 10 years from 1979 to 1988. In $hrs_{it} = \alpha_i + \beta \ln wgs_{it} + \varepsilon_{it}$

28 / 42

	POLS	Between	Within	First Diff	RE-GLS	RE-MLE
α	7.442	7.483	7.220	.001	7.346	7.346
$\boldsymbol{\beta}$.083	.067	.168	.109	.119	.120
Robust se ^b	(.030)	(.024)	(.085)	(.084)	(.051)	(.052)
Boot se	[.030]	[.019]	[.084]	[.083]	[.056]	[.058]
Default se	$\{.009\}$	$\{.020\}$	$\{.019\}$	$\{.021\}$	$\{.014\}$	$\{.014\}$
$\overline{R^2}$.015	.021	.016	.008	.014	.014
RMSE	.283	.177	.233	.296	.233	.233
RSS	427.225	0.363	259.398	417.944	288.860	288.612
TSS	433.831	17.015	263.677	420.223	293.023	292.773
σ_{lpha}	.000		.181		.161	.162
σ_{ε}	.283		.232		.233	.233
λ	0.000	-	1.000	_	.585	.586
Ν	5320	532	5320	4788	5320	5320

Assumption

Endogenous Variables or lagged dependent variables as regressors

$$E[\varepsilon_{it}|\alpha_i, \mathbf{x}_{i1}, \cdots, \mathbf{x}_{iT}] \neq 0, t = 1, \cdots, T.$$

Hereinafter, ε_{it} will be denoted as u_{it} ,

$$E\left[u_{it}|\alpha_{i},\mathbf{x}_{i1},\cdots,\mathbf{x}_{iT}\right]\neq0, \ t=1,\cdots,T.$$

This assumption cause inconsistencies with some aforementioned estimators.

- - E - - E

Estimation method under Endogenous setting

Panel GMM without α_i

For simplicity, consider about models without individual effect α_i

$$y_{it} = x_{it}\beta + u_{it}$$

 $\mathbf{y}_i = \mathbf{X}_i\beta + \mathbf{u}_i.$

$$\mathbf{y}_{i} = \begin{bmatrix} y_{i1} \\ \vdots \\ y_{iT} \end{bmatrix}; \quad \mathbf{X}_{i} = \begin{bmatrix} \mathbf{x}'_{i1} \\ \vdots \\ \mathbf{x}'_{iT} \end{bmatrix}; \quad \mathbf{u}_{i} = \begin{bmatrix} u_{i1} \\ \vdots \\ u_{iT} \end{bmatrix}$$

Insrumental Variable Assume
$$Z_i$$
 satisfying $E[\mathbf{Z}'_i\mathbf{u}_i]' = 0$,
 $E[\mathbf{Z}'_i\mathbf{X}_i]' \neq 0$ exist, Z_i can be used as instrumental variables.

Moment Condition

$$Q_N(\beta) = \left[\sum_{i=1}^N \mathbf{Z}'_i \mathbf{u}_i\right]' \mathbf{W}_N \left[\sum_{i=1}^N \mathbf{Z}'_i \mathbf{u}_i\right],$$

イロト イ団ト イヨト イヨト

э

GMM Estimator

$$\hat{eta}_{PGMM}=$$
 arg min $oldsymbol{Q}_{N}\left(eta
ight)$

$$\widehat{\boldsymbol{\beta}}_{\text{PGMM}} = \left[\left(\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \mathbf{X}_{i} \right) \right]^{-1} \left(\sum_{i=1}^{N} \mathbf{X}_{i}^{\prime} \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \mathbf{y}_{i} \right)$$

 $\widehat{\mathbf{V}}[\widehat{\boldsymbol{\beta}}_{\text{PGMM}}] = [\mathbf{X}'\mathbf{Z}\mathbf{W}_N\mathbf{Z}'\mathbf{X}]^{-1}\mathbf{X}'\mathbf{Z}\mathbf{W}_N(N\widehat{\mathbf{S}})\mathbf{W}'_N\mathbf{Z}'\mathbf{X}[\mathbf{X}'\mathbf{Z}\mathbf{W}_N\mathbf{Z}'\mathbf{X}]^{-1}$

where \hat{S} is a consistent estimator of

$$\mathbf{S} = \text{plim}\,\frac{1}{N}\sum_{i=1}^{N}\mathbf{Z}_{i}'\mathbf{u}_{i}\mathbf{u}_{i}'\mathbf{Z}_{i},$$

A B > A B >

2SLS (One-Step GMM)

$$\widehat{\boldsymbol{\beta}}_{2\text{SLS}} = [\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{X}]^{-1}\mathbf{X}'\mathbf{Z}(\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}.$$

2-Step GMM (2SGMM)

$$\widehat{\boldsymbol{\beta}}_{2\text{SGMM}} = [\mathbf{X}'\mathbf{Z}\widehat{\mathbf{S}}^{-1}\mathbf{Z}'\mathbf{X}]^{-1}\mathbf{X}'\mathbf{Z}\widehat{\mathbf{S}}^{-1}\mathbf{Z}'\mathbf{y}.$$

where \hat{S} is a estimator of *S* from 2SLS. 2SGMM is **more efficient** than One-Step GMM.

→ 3 → 4 3

GMM for Models with Individual Effects First-Differences GMM

Model assume Weak Exogeneity Assumption: $E[z_{is}\varepsilon_{it}] = 0, s \leq t,$

$$y_{it} = \alpha_i + x'_{it}\beta + \varepsilon_{it}.$$

Take first-differences

$$y_{it} - y_{i,t-1} = (\mathbf{x}_{it} - \mathbf{x}_{i,t-1})'\boldsymbol{\beta} + (\varepsilon_{it} - \varepsilon_{i,t-1}), \quad t = 2, \ldots, T.$$

2

$$y_{it}^* = x_{it}^{*\prime}\beta + \varepsilon_{it}^* \tag{7}$$

• Carry out *GMM* with model (7).

Remark: For $s \leq t - 1$, we have $E(Z_{is}(\varepsilon_{it} - \varepsilon_{i,t-1})) = E(Z_{is}\varepsilon_{it}^*) = 0$, but for s = t, $E(Z_{is}\varepsilon_{it}^*) \neq 0$, hence, $z_{i,t-1}, z_{i,t-2}, \cdots$ can be used as instrument for x_{it} , however, z_{it} can not.

GMM for Models with Individual Effects Within GMM

- Under the same assumption in last slide, since $E[z_{it}\bar{\epsilon}_i] \neq 0$, GMM does not work.
- If E [z_{is}ε_{it}] = 0 for all s and t, GMM works. But the assumption E [z_{is}ε_{it}] = 0 for all s and t, is too strong.

伺 ト イヨト イヨト

GMM for Models with Individual Effects GMM for Random Effect Model

New meaning of "Random Effect Model" If Z_i satisfying $E(\mathbf{Z}'_i(a_i + \varepsilon_i)) = 0$ exists, we call the model as random effect model.

GMM for RE models Defining $\mathbf{u}_i = \mathbf{a}_i + \mathbf{\varepsilon}_i$, we can use $E(\mathbf{Z}'_i \mathbf{u}_i) = E(\mathbf{Z}'_i(\mathbf{a}_i + \mathbf{\varepsilon}_i)) = 0$ as moment condition and carry out GMM estimation.

- 4 B b 4 B b

Table 22.1. Panel Exogeneity Assumptions and Resulting Instruments

Exogeneity Assumption	Moment Condition	Instrument Vector ^a
Summation	$E\left[\sum_{t} \mathbf{z}_{it} u_{it}\right] = 0$	$[\mathbf{z}_{it}]$
Contemporaneous	$\mathrm{E}\left[\mathbf{z}_{it}\mathbf{u}_{it}\right] = 0, \text{ all } t$	$[0'_{r_1}\cdots0'_{r_{r-1}} \mathbf{z}'_{it} 0'_{r_{r+1}}\cdots0'_{r_T}]$
Weak	$\mathbf{E}\left[\mathbf{z}_{is}u_{it}\right] = 0, s \leq t, \text{ all } t$	$[0'_{r_1}\cdots0'_{r_{t-1}}(\mathbf{z}^t_{it})'0'_{r_{t+1}}\cdots0'_{r_T}]$
Strong	$\mathbf{E}\left[\mathbf{z}_{is}u_{it}\right] = 0, \text{ all } s \text{ and } t$	$[0'_{r_1}\cdots0'_{r_{t-1}}(\mathbf{z}_{it}^T)'0'_{r_{t+1}}\cdots0'_{r_T}]$

э

Application Example

Hours and Wages

$\Delta \ln hrs_{it} = \beta_1 \Delta \ln wg_{it} + \beta_2 \Delta kids_{it} + \beta_3 \Delta age_{it} + \beta_4 \Delta agesq_{it} + \beta_5 \Delta disab_{it} + \Delta u_{it}.$

→ 3 → < 3</p>

	OLS	Base Case		Stacked	
		2SLS	2SGMM	2SLS	2SGM
β_1	0.112	0.209	0.547	0.543	0.330
Panel se	(.096)	(.374)	(.327)	(.209)	(.110)
Het se	[.079]	[.423]	[-]	[.226]	[-]
Default se	{.023}	{.389}	{ - }	{.169}	{ - }
RMSE	.283	.296	.307	.307	.298
Instruments	5	9	9	72	72
OIR Test	_	_	5.45	_	69.51
dof	_	_	4	_	67
<i>p</i> -value	_	_	.244	_	.393
N	4256	4256	4256	4256	4256

 Table 22.2. Hours and Wages: GMM-IV Linear Panel Model Estimators^a

Qingfeng Liu Econometrics Lecture Notes-Panel Data Analysis 40 / 42

- 4 同 6 4 日 6 4 日 6

э

Dynamic Panel Models

Dynamic Panel Model

$$\begin{array}{rcl} y_{it} & = & \gamma y_{i,t-1} + \mathbf{x}_{it}\beta + \alpha_i + \varepsilon_{it} \\ i & = & 1, \cdots, N, \quad t = 1, \cdots, T. \quad |\gamma| < 1 \end{array}$$

Endogenity Since $y_{i,t-1}$ is a function of α_i

$$y_{i,t-1} = \gamma y_{i,t-2} + \mathbf{x}_{i,t-1}\beta + \alpha_i + \varepsilon_{i,t-1}$$
$$E(y_{i,t-1}\alpha_i) \neq 0$$

/□ ▶ < 글 ▶ < 글

Estimator for Dynamic Panel Models

Arellano-Bond Estimator

• Take difference

$$(y_{it} - y_{i,t-1}) = \gamma (y_{i,t-1} - y_{i,t-2}) + (\mathbf{x}_{it} - \mathbf{x}_{i,t-1}) \beta + (\varepsilon_{it} - \varepsilon_{i,t-1})$$

- Use $y_{i,t-2}$ as instrumental variable
- Perform GMM

$$\widehat{\boldsymbol{\beta}}_{AB} = \left[\left(\sum_{i=1}^{N} \widetilde{\mathbf{X}}_{i}^{\prime} \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \widetilde{\mathbf{X}}_{i} \right) \right]^{-1} \left(\sum_{i=1}^{N} \widetilde{\mathbf{X}}_{i}^{\prime} \mathbf{Z}_{i} \right) \mathbf{W}_{N} \left(\sum_{i=1}^{N} \mathbf{Z}_{i}^{\prime} \widetilde{\mathbf{y}}_{i} \right)$$

글 🕨 🖌 글